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We construct Menger subsets of the real line whose product is not Menger in the 
plane. In contrast to earlier constructions, our approach is purely combinatorial. The 
set theoretic hypothesis used in our construction is far milder than earlier ones, and 
holds in almost all canonical models of set theory of the real line. On the other hand, 
we establish productive properties for versions of Menger’s property parameterized 
by filters and semifilters. In particular, the Continuum Hypothesis implies that 
every productively Menger set of real numbers is productively Hurewicz, and each 
ultrafilter version of Menger’s property is strictly between Menger’s and Hurewicz’s 
classic properties. We include a number of open problems emerging from this study.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A topological space X is Menger if for each sequence U1,U2, . . . of open covers of the space X, there are 
finite subsets F1 ⊆ U1, F2 ⊆ U2, . . . whose union forms a cover of the space X. This property was introduced 
by Karl Menger [17], and reformulated as presented here by Witold Hurewicz [11]. Menger’s property is 
strictly between σ-compact and Lindelöf. Now a central notion in topology, it has applications in a number 
of branches of topology and set theory. The undefined notions in the following example, which are available 
in the indicated references, are not needed for the remainder of this paper.

Example 1.1. Menger spaces form the most general class for which a positive solution of the D-space problem 
is known [2, Corollary 2.7], and the most general class for which a general form of Hindman’s Finite Sums 

* Corresponding author.
E-mail addresses: p.szewczak@wp.pl (P. Szewczak), tsaban@math.biu.ac.il (B. Tsaban).
URL: http://math.biu.ac.il/~tsaban (B. Tsaban).

http://dx.doi.org/10.1016/j.apal.2016.08.002
0168-0072/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.apal.2016.08.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
mailto:p.szewczak@wp.pl
mailto:tsaban@math.biu.ac.il
http://math.biu.ac.il/~tsaban
http://dx.doi.org/10.1016/j.apal.2016.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apal.2016.08.002&domain=pdf


2 P. Szewczak, B. Tsaban / Annals of Pure and Applied Logic 168 (2017) 1–18

Theorem holds [27]. In set theory, Menger’s property characterizes filters whose Mathias forcing notion does 
not add dominating functions [9].

Menger’s property is hereditary for closed subsets and continuous images. By a classic result of Todor-
čević there are, provably, Menger spaces X and Y such that the product space X × Y is not Menger [24, 
§3]. It remains open whether there are, provably, such examples in the real line, or even just metrizable 
examples [25, Problem 6.7]. This problem, proposed by Scheepers long ago, resisted tremendous efforts thus 
far.

For brevity, sets of real numbers are called here real sets.1 An uncountable real set is Luzin if its intersec-
tion with every meager (Baire first category) set is countable. Assuming the Continuum Hypothesis, there 
are two Luzin sets whose product is not Menger [12, Theorem 3.7]. An uncountable real set X is concen-
trated if it has a countable subset D such that the set X \U is countable for every open set U containing D. 
Every Luzin set is concentrated, and every concentrated set has Menger’s property. This approach extends 
to obtain similar examples using a set theoretic hypothesis about the meager sets that is weaker than the 
Continuum Hypothesis [21, Theorem 49]. Later methods [29, Theorem 9.1] were combined with reasoning 
on meager sets to obtain examples using another portion of the Continuum Hypothesis [19, Theorem 3.3].

We introduce a purely combinatorial approach to products of Menger sets. We obtain examples using 
hypotheses milder than earlier ones, as well as examples using hypotheses that are incompatible with the 
Continuum Hypothesis. To this end, we introduce the key notion of bi-d-unbounded set, and determine the 
limits on its possible existence. We extend these results to variations of Menger’s property parameterized 
by filters and semifilters (defined below). For a semifilter S, we introduce the notion of S-scale. These scales 
provably exist, and capture a number of distinct special cases used in earlier works.

The second part of the paper, beginning with Section 5, establishes provably productive properties among 
semifilter-parameterized Menger properties. If S is an ultrafilter, then every S-scale gives rise to a real set 
that is productively S-Menger. We deduce that each of these variations of Menger’s property is strictly 
between Hurewicz’s and Menger’s classic properties.

The last section includes a discussion of related results and open problems suggested by this study.

2. Products of Menger sets

Towards a combinatorial treatment of the questions discussed here, we identify the Cantor space {0, 1}N
with the family P(N) of all subsets of the set N. Since the Cantor space is homeomorphic to Cantor’s set, 
every subspace of the space P(N) is considered as a real set.

The space P(N) splits into two important subspaces: the family of infinite subsets of N, denoted [N]∞, 
and the family of finite subsets of N, denoted [N]<∞. We identify every set a ∈ [N]∞ with its increasing 
enumeration, an element of the Baire space NN. Thus, for a natural number n, a(n) is the n-th element in 
the increasing enumeration of the set a. This way, we have [N]∞ ⊆ NN, and the topology of the space [N]∞

(a subspace of the Cantor space P(N)) coincides with the subspace topology induced by NN. This explains 
some of the elementary assertions made here; moreover, notions defined here for [N]∞ are often adaptations 
of classic notions for NN. Depending on the interpretation, points of the space [N]∞ are referred to as sets 
or functions.

For functions a, b ∈ [N]∞, we write a ≤ b if a(n) ≤ b(n) for all natural numbers n, and a ≤∗ b if 
a(n) ≤ b(n) for almost all natural numbers n, that is, the set of exceptions { n : b(n) < a(n) } is finite. We 
follow the convention that bounded means has an upper bound in the ambient superset.

1 The term real set is a natural extension of the standard notions real number, real matrix, real function, etc., and should be 
understood as a convenient abbreviation. It does not imply that other sets are less “real”.
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