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Using finite directed systems defined from “primitive” extension and amalgamation 
operations, we define an abstract notion of hierarchical decomposition that applies to 
a large family of classes of finite structures (tame classes). We prove that for any such 
class C that is uniformly hierarchical – in the sense that cofinally-many members 
of C have decompositions according to a functorial “program” – the theory TC of 
the generic structure is rosy. Conversely, we also show that for any tame class C, 
if TC is rosy, then C is uniformly hierarchical. Thus, the project of stratifying 
the complexity of computationally hard problems through parametrizing “width” 
notions – an important current in Finite Model Theory and Descriptive Complexity 
Theory – has a second face in Geometric Model Theory.

© 2016 Elsevier B.V. All rights reserved.

0. Introduction

Using finite directed systems defined from “primitive” extension and amalgamation operations, we define 
an abstract notion of hierarchical decomposition that applies to a large family of classes C of finite structures 
(tame classes, such as the class of all finite graphs). This notion of hierarchical decomposition generalizes, 
for graphs, the well-known scheme of tree-decomposition and such slightly less well-known schemes as 
rank-width (see [14] and [20], for example), and for application to more general structures than graphs, our 
notion of decomposition does not require imposition of or reduction to a graph such as the Gaifman graph 
of a relational structure.

We prove that for any tame1 class C that is uniformly hierarchical – in the sense, that cofinally-many 
members of C have decompositions according to a functorial program – the theory TC of the generic/limit 
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1 Compared to [10], the definition of “tame” used here is a bit stronger: We require that TC has weak elimination of imaginaries 

and a certain “bounded algebraic arity” property.
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structure is rosy (equivalently, here: super-rosy of finite Uþ-rank). þ-Independence – the defining inde-
pendence relation of rosiness – is at the outer extreme of useful concepts of model-theoretic geometry 
(simultaneously generalizing linear independence in vector spaces, algebraic independence in fields, and 
topological dimension in the context of analytic and real algebraic geometry). What’s more, it can be shown 
(see [8,2,11]) that a theory T may admit a model-theoretic independence relation at all if and only if T
is rosy, in which case every independence relation is a refinement of þ-independence. Our proof that every 
uniformly hierarchical class C is rosy proceeds by extracting an independence relation directly from decom-
positions, and it is hoped that this technique could be used more broadly in the analysis of algorithms on 
structures in the sense of [1].

Conversely – using relatively classical techniques of coordinatization from model theory – we also show 
that for any tame class C, if TC is rosy, then C is uniformly hierarchical. Thus, the project of stratifying 
the complexity of computationally hard problems through parametrized “width” notions – an important 
current in Finite Model Theory and Descriptive Complexity Theory – has a second face in Geometric Model 
Theory. In summary, the contribution of this article is precisely the following:

Theorem 0.1. A tame class C in a finite language is rosy if and only if it is uniformly hierarchical.

0.1. Hierarchical decompositions in fixed-parameter tractability

The concepts of tree-decompositions and tree-width of undirected graphs formed an essential compo-
nent of the proof of the celebrated Graph Minor Theorem of Robertson and Seymour (surveyed in [17]
and [14]), and on graphs of bounded tree-width, many otherwise hard problems are known to admit ef-
ficient algorithms. A well-known example of this phenomenon is Courcelle’s Theorem [6], asserting that 
on any class of graphs of bounded tree-width, each graph property expressible in monadic second-order 
logic (MSO) is decidable in linear time. Among the MSO-expressible graph properties are some classic
NPtime-complete problems such as 3-Colorability, but the power of Courcelle’s Theorem is already ap-
parent on the level first-order expressible graph properties, as we briefly discuss now. Consider the following
FO-Model-checking problem:

Given a finite graph G = (G, RG) and a first-order sentence φ in the language of graphs, return True just 
in case G |= φ. (Otherwise, return False.)

The naïve approach to this problem using just the definition of satisfaction for first-order formulas yields an 
algorithm with running-time O(|G|qr(φ)) where qr(φ) denotes the quantifier-rank of φ. There are, of course, 
two parameters involved in the expression of the running-time, but in the naïve algorithm, it is not at all 
clear how these might be extricated from one another. Courcelle’s approach (and similar approaches for 
other notions of decomposition) splits the complexity (=running-time) into its two natural components – 
yielding algorithms with running-times expressible in the form O(f(qr(φ)) + |G|k), where k is an integer 
and f : ω → ω is a computable function. This split reflects a split in the underlying algorithms, which 
commonly have the following form (given G and φ as above):

(1) Preprocess φ (in time f(qr(φ))) into the appropriate form.
(In the case of Courcelle’s algorithm, φ is converted into a tree automaton. For some other notions of 
decomposition, prenex normal form with negations only on literals is sufficient.)

(2) In polynomial time, compute a hierarchical decomposition of G (a tree-decomposition of width less than 
the given bound).

(3) In polynomial time, evaluate “G |= φ?” (For Courcelle’s algorithm, one more or less just runs the 
automaton on the tree just recovered; in general, a dynamic programming approach is often adequate.)
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