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We consider locally finite graphs with vertex set N. A graph G is computable if 
the edge set is computable and highly computable if the neighborhood function NG

(which given v outputs all of its adjacent vertices) is computable. Let χ(G) be the 
chromatic number of G and χc(G) be the computable chromatic number of G. Bean 
showed there is a computable graph G with χ(G) = 3 and χc(G) = ∞, but if G is 
highly computable then χc(G) ≤ 2χ(G). In a computable graph the neighborhood 
function is Δ0

2. In highly computable graphs it is computable. It is natural to ask 
what happens between these extremes. A computable graph G is A-computable if 
NG ≤T A. Gasarch and Lee showed that if A is c.e. and not computable then there 
exists an A-computable graph G such that χ(G) = 2 but χc(G) = ∞. Hence for A
noncomputable and c.e., A-computable graphs behave more like computable graphs 
than highly computable graphs. We prove analogous results for Euler paths and 
domatic partitions. Gasarch and Lee left open what happens for other Δ0

2 sets A. 
We show that there exists an ∅ <T A <T ∅′ such that every A-computable graph 
G with χ(G) < ∞ has χc(G) < ∞. Finally, we classify all such A.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

When applying notions in computability theory to results in graph theory, we often find that classical 
results are not effectively true. Two early examples of this phenomenon are due to Bean: there is a computable 
graph with an Euler path but no computable Euler path [2], and there is a computable graph with chromatic 
number 3 but no computable finite coloring [1] (in fact there is a computable graph with chromatic number 
2 with no computable finite coloring if you don’t require the graph to be connected [13]). Results of this 
flavor abound including ones for Hamilton paths [5], perfect matchings [8], edge colorings [7], and domatic 
partitions [6].
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Some of these results (including the original two of Bean) rely heavily on our ability to add neighbors to 
a given vertex in the construction of the graphs. A computable graph is simply a graph for which the edge 
relation is computable (here and throughout the paper we assume without loss of generality that computable 
graphs have vertex set N). Thus there is an effective procedure to decide whether two given vertices are in 
fact adjacent. However, we cannot in general produce the list of all vertices adjacent to a given vertex (or 
equivalently, determine the degree or valency of a given vertex). Those computable graphs which have a 
computable neighborhood function, which, when given a vertex, outputs the list of all vertices adjacent to 
it (i.e., its neighbors), are called highly computable. For this definition to make sense, all vertices must have 
only finitely many neighbors (such graphs are called locally finite), and in this paper we will only consider 
such graphs.

Whenever a construction of a graph requires adding neighbors to vertices arbitrarily late in the con-
struction, we wonder whether this requirement is necessary. Often it is, in that the result that holds for 
computable graphs fails to hold for highly computable graphs. Indeed, every highly computable graph 
with chromatic number n has a computable (2n − 1)-coloring (proved independently by Schmerl [13] and 
Carstens and Päppinghaus [3]; Schmerl proved this bound is tight). Similarly, every highly computable 
graph containing an Euler path has a computable Euler path [2].

The goal of this paper is to better understand this behavior by investigating graphs that are between
computable and highly computable. We adopt the approach suggested by Gasarch and Lee [4] and consider 
A-computable graphs1 for various Δ0

2 sets A, meaning A computes the neighborhood function. We denote 
the neighborhood function of G by NG. Specifically, given a vertex v of G, NG(v) returns the canonical 
index for the finite set of vertices that are adjacent to v in G.

Definition 1.1 (Gasarch and Lee). Let A be a set. A locally finite graph G = (V, E) is A-computable
provided G is computable and NG ≤T A.

Note that computable graphs always have a neighborhood function computable from the halting prob-
lem K, so they are K-computable, while highly computable graphs have computable neighborhood function, 
making them ∅-computable.

Since A-computable graphs might be somewhere between computable and highly computable, it is rea-
sonable to wonder whether the complexity of graph-theoretic properties of A-computable graphs might be 
between those of computable and highly computable graphs. Gasarch and Lee considered this question for 
vertex colorings and found that at least for noncomputable c.e. sets A, the A-computable graphs behave 
just like the computable ones. The following is the main result of their paper.

Theorem 1.2 (Gasarch and Lee). (See [4].) Let A be a noncomputable c.e. set. There exists an A-computable 
graph G such that G is 2-colorable but not computably k-colorable for any natural number k.

The authors employed the technique of c.e.-permitting in their construction. They asked:

Question 1.3. Can Theorem 1.2 be extended to any set A with ∅ <T A <T ∅′?

They remarked that the construction would be more difficult without permitting, and suggested that it 
might be easier first to consider the case when A is 2-c.e. Indeed, there is a version of permitting with Δ0

2
sets, aptly called Δ0

2-permitting. (See [9] for a nice exposition of this method.) Unfortunately, the method of 
Δ0

2-permitting does not seem to apply when constructing an A-computable graph. The reason is that, while 
the neighborhood function of an A-computable graph is necessarily Δ0

2, we cannot remove an edge from an 

1 Gasarch and Lee used the term A-recursive to denote the same concept.



Download English Version:

https://daneshyari.com/en/article/4661591

Download Persian Version:

https://daneshyari.com/article/4661591

Daneshyari.com

https://daneshyari.com/en/article/4661591
https://daneshyari.com/article/4661591
https://daneshyari.com

