Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Counterexamples to countable-section Π_2^1 uniformization and Π_3^1 separation $\stackrel{\Rightarrow}{\approx}$

ABSTRACT

separation fails for Π_3^1 .

Vladimir Kanovei^{a,b,*,1}, Vassily Lyubetsky^{a,2}

^a IITP RAS, Bolshoy Karetny per. 19, build.1, Moscow 127051, Russia
^b IEF MIIT, Novosuschevsky, 22, Moscow 127994, Russia

ARTICLE INFO

Article history: Received 27 March 2015 Accepted 11 November 2015 Available online 28 December 2015

MSC: 03E15 03E35 03E20 28A05

Keywords: Uniformization Separation Jensen's forcing Finite support

1. Introduction

The uniformization problem, introduced by Luzin [17,18], is well known in modern set theory. (See Moschovakis [19], Kechris [16], Hauser and Schindler [6] for both older and more recent studies.) In particular, it is known that every Σ_2^1 set can be uniformized by a set of the same class Σ_2^1 , but on the other hand, there is a Π_2^1 set (in fact, a lightface Π_2^1 set), not uniformizable by any set in Π_2^1 . The negative part of this result cannot be strengthened much further in the direction of the absence of more complicated uniformizing sets since any Π_2^1 set admits a Δ_3^1 -uniformization assuming $\mathbf{V} = \mathbf{L}$ and admits a Π_3^1 -uniformization assuming the existence of sharps (the Martin–Solovay–Mansfield theorem, [19, 8H.10]).

* Corresponding author.

We make use of a finite support product of the Jensen minimal Π_1^1 singleton

forcing to define a model in which Π_2^1 uniformization fails for a set with countable

cross-sections. We also define appropriate submodels of the same model in which

 $^{^{\}diamond}$ This document is a collaborative effort.

E-mail addresses: kanovei@googlemail.com (V. Kanovei), lyubetsk@iitp.ru (V. Lyubetsky).

¹ Partial support of RFFI grant 13-01-00006 acknowledged.

 $^{^2\,}$ Partial support of the Russian Science Foundation grant 14-50-00150 acknowledged.

However, the mentioned Π_2^1 -non-uniformization theorem can be strengthened in the context of consistency. For instance, the Π_2^1 set

$$P = \{ \langle x, y \rangle : x, y \in 2^{\omega} \land y \notin \mathbf{L}[x] \}$$

is not uniformizable by any ROD (real-ordinal definable) set in the Solovay model and many other models of **ZFC** in which it is not true that $\mathbf{V} = \mathbf{L}[x]$ for a real x, and then the cross-sections of P can be considered as "large", in particular, they are definitely uncountable. Therefore one may ask:

Question 1. Is it consistent that there is a ROD-non-uniformizable Π_2^1 set P such that all cross-sections $P_x = \{y : \langle x, y \rangle \in P\}$ are at most countable?

This question is obviously connected with another question, initiated and briefly discussed at the Mathoverflow exchange desk³ and at FOM⁴:

Question 2. Is it consistent with **ZFC** that there is a *countable* definable set of reals $X \neq \emptyset$ which has no OD (ordinal definable) elements.

Ali Enayat (footnote 4) conjectured that Question 2 can be solved in the positive by the finite-support product $\mathbb{P}^{<\omega}$ of countably many copies of the Jensen "minimal Π_2^1 real singleton forcing" \mathbb{P} defined in [9].⁵ Enayat demonstrated in [2] that a symmetric part of the $\mathbb{P}^{<\omega}$ -generic extension of **L**, the constructible universe, definitely yields a model of **ZF** (not a model of **ZFC**!) in which there is a Dedekind-finite infinite OD set of reals with no OD elements.

Following the mentioned conjecture, we proved in [14] that indeed it is true in a $\mathbb{P}^{<\omega}$ -generic extension of **L** that the set of \mathbb{P} -generic reals is a countable non-empty Π_2^1 set with no OD elements.⁶ Using a finite-support product $\prod_{\xi < \omega_1} \mathbb{P}_{\xi}^{<\omega}$, where the forcing notions \mathbb{P}_{ξ} are pairwise different clones of Jensen's forcing \mathbb{P} , we answer Question 1 in the positive.

Theorem 1.1. In a suitable generic extension of **L**, it is true that there is a lightface Π_2^1 set $P \subseteq 2^{\omega} \times 2^{\omega}$ whose all cross-sections $P_x = \{y : \langle x, y \rangle \in P\}$ are at most countable, but P is not uniformizable by a ROD set.

Using an appropriate generic extension of a submodel of the same model, similar, to some extent, to models considered in Harrington's unpublished notes [5], we also prove

Theorem 1.2. In a suitable generic extension of \mathbf{L} , it is true that there is a pair of disjoint lightface Π_3^1 sets $X, Y \subseteq 2^{\omega}$, not separable by disjoint Σ_3^1 sets, and hence Π_3^1 Separation and Π_3^1 Separation fail.

This result was first proved by Harrington in [5] on the basis of almost disjoint forcing of Jensen–Solovay [10], and in this form has never been published, but was mentioned in [19, 5B.3] and [7, page 230]. A complicated alternative proof of Theorem 1.2 can be obtained with the help of *countable-support* products and iterations of Jensen's forcing studied earlier in [1,11,12]. The *finite-support* approach which we pursue here

³ A question about ordinal definable real numbers. Mathoverflow, March 09, 2010. http://mathoverflow.net/questions/17608.

⁴ Ali Enayat. Ordinal definable numbers. FOM Jul 23, 2010. http://cs.nyu.edu/pipermail/fom/2010-July/014944.html.

⁵ Jensen's forcing below, for the sake of brevity—on this forcing, see also 28A in [8].

⁶ We also proved in [15] that the existence of a Π_2^1 E₀-class with no OD elements is consistent with **ZFC**, using a E₀-invariant version of the Jensen forcing. A related consistency result on countable Groszek–Laver pairs, established by similar methods, will appear in [3].

Download English Version:

https://daneshyari.com/en/article/4661593

Download Persian Version:

https://daneshyari.com/article/4661593

Daneshyari.com