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Justification logics connect with modal logics, replacing unstructured modal 
operators with justification terms explicitly representing interdependence and flow 
of reasoning. The number of justification logics quickly grew from an initial single 
instance to a handful to about a dozen examples. In this paper we provide very 
general, though partly non-constructive, methods that cover all previous examples, 
and extend to an infinite family of modal logics. The full range of the phenomenon 
is not known. The extent to which constructive methods apply is also not known, 
but it is related to the availability of cut-free proof methods for modal logics.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Justification logics are similar to modal logics, but with modal operators replaced by an infinite family 
of justifications that are intended to stand for explicit reasons. They are very fine-grained and, crucially, 
can internalize details of their own formal proofs. Justification logics are connected with modal logics via 
realization results. Roughly, realization replaces modal operators in a modal theorem with justification 
terms whose structure reflects the flow of reasoning involved in establishing the modal theorem. The first 
justification logic was LP, which was connected with the modal logic S4. This is discussed in the next section. 
The number of modal logics known to have justification counterparts with connecting realization theorems 
has grown over the years. We now see we are dealing with a general phenomenon whose extent is not known. 
In this paper we give a general approach to justification logics and to realization. In particular we show that 
the family of modal logics with justification counterparts is infinite.

Since justification logics are not as familiar as modal logics, we begin with a brief history. In particular 
we discuss how they came about in the first place—their original motivation. Then we give a very general 
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approach to justification logics and realization. We note that there are now versions of quantified justification 
logics, but in this paper we confine our discussion entirely to propositional cases.

2. The origin story

The family of justification logics grew from a single instance, the logic of proofs, LP. This was introduced 
by Sergei Artemov as an essential part of his program to create an arithmetic provability semantics for 
intuitionistic logic. Features of LP have had a significant influence on research into the developing group of 
justification logics, so it is appropriate that we begin with a brief discussion of LP history.

Gödel formulated, at least implicitly, a program to find an arithmetic semantics for intuitionistic logic. 
In a well-known note, [19], he introduced the modern axiomatization of the modal logic S4, thinking of 
the � operator as an informal provability operator. He also gave an embedding from intuitionistic logic to 
S4: put � before every subformula. This amounts to thinking of intuitionistic truth as a kind of informal 
provability, with provability conditions reflected in conditions imposed on �. But he also noted that S4 does 
not embed into Peano arithmetic, translating � as his formal provability operator. If it did, then the S4
theorem �⊥ ⊃ ⊥ would turn into a provable statement asserting consistency, something ruled out by his 
famous second incompleteness theorem. Since then it has been learned that the logic of formal arithmetic 
provability is GL, Gödel–Löb logic, but this does not relate in the desired way to intuitionistic logic.

In [20], Gödel introduced the idea that instead of thinking of the � operator of S4 as provability, it 
could be thought of as an explicit proof representative. Each occurrence of � could be translated in a 
different way. While (∃x)(x Proves ⊥) ⊃ ⊥ is not provable in Peano arithmetic, for each n that is the Gödel 
number of an arithmetic proof, (n Proves ⊥) ⊃ ⊥ is provable. In a sense this moves the existential quantifier 
into the metalanguage. Using explicit proof representatives, an embedding of S4 into arithmetic should be 
possible, Gödel suggested. This proposal was not developed further by Gödel, and his observations were 
not published until many years later when his collected works appeared. By this time the idea had been 
rediscovered independently by Sergei Artemov. Artemov’s formal treatment involved the introduction of 
a new logic, LP, standing for logic of proofs. This is a modal-like language, but with proof terms which 
one could think of as encapsulating explicit proofs. It was necessary to show that LP embedded into formal 
arithmetic, and this was done in Artemov’s Arithmetic Completeness Theorem which we do not discuss here. 
But it was also necessary to show that S4 embedded into LP. This involved the formulation and proof of 
Artemov’s Realization Theorem. A proper statement will be found in Section 4. The definitive presentation 
of all this is in [1].

The methods that connected S4 with LP could also make connections between the standard modal logics, 
K, K4, T, and some others and weaker versions of LP. The Artemov Realization Theorem extended to these 
logics as well, essentially by leaving cases out. There was also an arithmetic interpretation because these were 
sublogics of S4, but the connection with arithmetic was beginning to weaken. The term justification logics
began being used because, while the connection with formal provability was fragmenting, proof terms (now 
called justification terms) still had the role of supplying explicit justifications for (epistemically) necessary 
statements. Two fairly comprehensive treatments of justification logics like these, and not just of the logic 
of proofs, can be found in [2] and [4].

The logic S5 extended the picture in a significant way. A justification logic counterpart was created in 
[26–28], and a realization theorem was proved. However, the resulting justification logic did not have a sat-
isfactory arithmetical interpretation, and the proof of realization was not constructive. A non-constructive, 
semantic, proof of realization had been given in [9] for S4. It also applied to standard weaker logics without 
significant change. The extension to S5 required new ideas involving strong evidence functions. This will 
play a role here as well. The original Artemov proof of realization, connecting S4 and LP, was constructive. 
Indeed, as a key part of Artemov’s program to provide an arithmetic semantics for intuitionistic logic, it 
was essential that it be constructive. S5 was the first example where a non-constructive proof was the initial 
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