Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

The poset of all copies of the random graph has the 2-localization property

Miloš S. Kurilić^{a,*}, Stevo Todorčević^{b,c}

^a Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Trg Dositeja Obradovića 4. 21000 Novi Sad, Serbia

Institut de Mathématique de Jussieu (UMR 7586) Case 247, 4 Place Jussieu, 75252 Paris Cedex, France ^c Department of Mathematics, University of Toronto, Toronto M5S 2E4, Canada

ARTICLE INFO

Article history: Received 30 November 2014 Accepted 25 January 2016 Available online 12 April 2016

MSC: 03C5003E40 05C8020M20 Keywords: Countable random graph Isomorphic substructure Self-embedding Right Green's pre-order

ABSTRACT

Let G be a countable graph containing a copy of the countable universal and homogeneous graph, also known as the random graph. Let Emb(G) be the monoid of self-embeddings of G, $\mathbb{P}(G) = \{f[G] : f \in \text{Emb}(G)\}\$ the set of copies of G contained in G, and \mathcal{I}_G the ideal of subsets of G which do not contain a copy of G. We show that the poset $\langle \mathbb{P}(G), \subset \rangle$, the algebra $P(G)/\mathcal{I}_G$, and the inverse of the right Green's pre-order $\langle \operatorname{Emb}(G), \preceq^R \rangle$ have the 2-localization property. The Boolean completions of these pre-orders are isomorphic and satisfy the following law: for each double sequence $[b_{nm} : \langle n, m \rangle \in \omega \times \omega]$ of elements of \mathbb{B}

$$\bigwedge_{n\in\omega}\,\bigvee_{m\in\omega}\,b_{nm}=\bigvee_{\mathcal{T}\,\in\,\mathrm{Bt}({}^{<\omega}\omega)}\,\bigwedge_{n\in\omega}\,\bigvee_{\varphi\,\in\,\mathcal{T}\,\cap^{n+1}\omega}\,\bigwedge_{k\leq n}\,b_{k\varphi(k)},$$

where $Bt({}^{<\omega}\omega)$ denotes the set of all binary subtrees of the tree ${}^{<\omega}\omega$. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

2-localization Forcing

Let X be a relational structure, $\operatorname{Emb}(X)$ the monoid of its self-embeddings and $\mathbb{P}(X) = \{f[X] : f \in \mathbb{R}\}$ $\operatorname{Emb}(\mathbb{X})$ the set of copies of \mathbb{X} inside \mathbb{X} (more precisely, $\mathbb{P}(\mathbb{X})$ is the set of domains of the substructures of X which are isomorphic to X). Defining two structures X and Y to be similar if $\mathbb{P}(\mathbb{X}) = \mathbb{P}(\mathbb{Y})$ we obtain a classification of structures and, for example, the structure $\langle \omega, \emptyset \rangle$, the linear order $\langle \omega, \langle \rangle$ and the complete graph $\langle \omega, \omega^2 \setminus \Delta_\omega \rangle$ are similar binary structures in this sense.

A coarser classification of structures, related to the right Green's pre-order \preceq^R on the monoid $\text{Emb}(\mathbb{X})$ (defined by $f \leq^R g$ iff $f \circ h = g$, for some $h \in \text{Emb}(\mathbb{X})$) is obtained by demanding that the posets $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$

Corresponding author.

E-mail addresses: milos@dmi.uns.ac.rs (M. Kurilić), stevo.todorcevic@imf-prg.fr, stevo@math.toronto.edu (S. Todorčević).

and $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$ are isomorphic. (It is easy to check that the antisymmetric quotient of the inverse of the right Green's pre-order, asq $\langle \text{Emb}(\mathbb{X}), (\preceq^R)^{-1} \rangle$, is isomorphic to the poset $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$, see [10].)

Finally, defining two structures \mathbb{X} and \mathbb{Y} to be similar if the Boolean completions of their posets of copies, $\operatorname{rosq}(\mathbb{P}(\mathbb{X}), \subset)$ and $\operatorname{rosq}(\mathbb{P}(\mathbb{Y}), \subset)$ are isomorphic, we obtain a classification which is coarser that the previous two. Since isomorphism of the Boolean completions of posets of copies is the same as their forcing equivalence [9], the last classification is, in fact, the classification of the posets of the form $(\mathbb{P}(\mathbb{X}), \subset)$ determined by their forcing-related properties (see [4–8] for some results concerning the classification of countable relational structures).

The structure considered in this paper is the countable universal homogeneous graph (also known as the random graph, Erdős–Rényi graph [2], Rado graph [14]).

Concerning the classification of countable ultrahomogeneous relational structures we first mention the following result from [11] related to the poset of copies of the rational line, \mathbb{Q} , and the corresponding quotient $P(\mathbb{Q})/\operatorname{Scatt}$, where Scatt denotes the ideal of scattered suborders of \mathbb{Q} : if \mathbb{S} denotes the Sacks perfect set forcing and $\operatorname{sh}(\mathbb{S})$ the size of the continuum in the Sacks extension, then for each countable non-scattered linear order L and, in particular, for the rational line, the poset $\mathbb{P}(L)$ is forcing equivalent to the two-step iteration

 $\mathbb{S}*\pi$

where $1_{\mathbb{S}} \Vdash "\pi$ is a σ -closed forcing". If the equality $\operatorname{sh}(\mathbb{S}) = \aleph_1$ (implied by CH) or PFA holds in the ground model, then the second iterand is forcing equivalent to the poset $(P(\omega)/\operatorname{Fin})^+$ of the Sacks extension. Consequently,

$$\operatorname{rosq}\operatorname{asq}(\operatorname{Emb}(\mathbb{Q}), (\preceq^R)^{-1}) \cong \operatorname{rosq}\mathbb{P}(\mathbb{Q}) \cong \operatorname{ro}((P(\mathbb{Q})/\operatorname{Scatt})^+) \cong \operatorname{ro}(\mathbb{S} * \pi)$$

The following similar statement for countable non-scattered graphs (that is, the graphs containing a copy of the Rado graph) was obtained in [12].

Theorem 1.1. For each countable non-scattered graph $\langle G, \sim \rangle$ and, in particular, for the Rado graph, the poset $\mathbb{P}(G)$ is forcing equivalent to the two-step iteration

$$\mathbb{P} * \pi$$
 (1)

where $1_{\mathbb{P}} \Vdash "\pi$ is an ω -distributive forcing" and the poset \mathbb{P} adds a generic real, has the \aleph_0 -covering property (thus preserves ω_1), has the Sacks property and does not produce splitting reals. In addition,

$$\operatorname{rosq}\operatorname{asq}(\operatorname{Emb}(G), (\preceq^R)^{-1}) \cong \operatorname{rosq}\mathbb{P}(G) \cong \operatorname{ro}(P(R)/\mathcal{I}_R)^+ \cong \operatorname{ro}(\mathbb{P} * \pi)$$

$$\tag{2}$$

and these complete Boolean algebras are weakly distributive.¹

We note that the Sacks forcing has all the properties listed in Theorem 1.1: it adds a generic real, has the \aleph_0 -covering and the Sacks property and does not produce splitting reals. In the present paper we show that the poset of copies of the Rado graph and, hence, the forcing \mathbb{P} from (1) share one more property with the Sacks forcing – the 2-localization property, first introduced and studied by Newelski and Rosłanowski in

$$\bigwedge_{n\in\omega} \ \bigvee_{\alpha\in\kappa} \ b_{n\alpha} = \bigvee_{s:\omega\to[\kappa]^{<\omega}} \ \bigwedge_{n\in\omega} \ \bigvee_{\alpha\in s(n)} b_{n\alpha}.$$

¹ A complete Boolean algebra \mathbb{B} is called *weakly distributive* (or $(\omega, \cdot, <\omega)$ -distributive, see [3]) iff for each cardinal κ and each matrix $[b_{n\alpha} : \langle n, \alpha \rangle \in \omega \times \kappa]$ of elements of \mathbb{B} we have

Download English Version:

https://daneshyari.com/en/article/4661618

Download Persian Version:

https://daneshyari.com/article/4661618

Daneshyari.com