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Proof-theoretic methods are developed and exploited to establish properties of the 
variety of lattice-ordered groups. In particular, a hypersequent calculus with a cut 
rule is used to provide an alternative syntactic proof of the generation of the 
variety by the lattice-ordered group of automorphisms of the real number chain. 
Completeness is also established for an analytic (cut-free) hypersequent calculus 
using cut elimination and it is proved that the equational theory of the variety is 
co-NP complete.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A lattice-ordered group (�-group) is an algebraic structure

(L,∧,∨, ·,−1, 1)

such that (L, ∧, ∨) is a lattice, (L, ·, −1, 1) is a group, and · preserves the order in both arguments; i.e., a ≤ b

implies a · c ≤ b · c and c · a ≤ c · b for all a, b, c ∈ L. It follows also from this definition that the lattice 
(L, ∧, ∨) is distributive and that 1 ≤ a ∨ a−1 for all a ∈ L. We refer to [1] for proofs and further standard 
facts about this class of structures.
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Commutative �-groups include the real, rational, and integer numbers with the standard total order and 
addition. For non-commutative examples, consider a chain (totally-ordered set) Ω and denote by Aut(Ω) the 
set of all order-preserving bijections on Ω. Then Aut(Ω) constitutes an �-group Aut(Ω) under coordinate-
wise lattice operations, functional composition, and functional inverse. It was proved by Holland in [10] that 
the variety of �-groups LG is generated by Aut(R), where R is the real number chain, or indeed by any 
Aut(Ω), where Ω is an n-transitive chain for all n (i.e., for any two n-tuples of elements of Ω there is a 
bijection that maps the first tuple to the second). The standard proof relies on Holland’s embedding theo-
rem, which states, analogously to Cayley’s theorem for groups, that every �-group embeds into an �-group 
Aut(Ω) for some chain Ω [9]. Although not every �-group embeds into Aut(R), each identity that fails in 
some �-group fails, by the embedding theorem, in some automorphism �-group, and a simple argument then 
shows that the identity must also fail in Aut(R). This generation result for LG was subsequently exploited 
by Holland and McCleary to provide an algorithm for checking if an identity is valid in all �-groups [11].

The first main contribution of this paper is a new syntactic (and first axiom of choice free) proof that 
Aut(R) generates the variety LG of �-groups. A proof system is defined in a one-sided hypersequent frame-
work such that derivability of a hypersequent (interpreted as a disjunction of group terms) implies the 
validity of a corresponding identity in all �-groups. A rule is then added to the system and it is shown, 
following closely the Holland–McCleary algorithm of [11], that this augmented system derives all identities 
(rewritten in a certain form) that are valid in Aut(R). Finally, it is proved syntactically that applications 
of this rule can be eliminated from derivations. Hence an identity is valid in Aut(R) if and only if it is 
valid in all �-groups, and so, by Birkhoff’s variety theorem, Aut(R) generates LG. This proof illustrates the 
usefulness of proof-theoretic methods for tackling algebraic problems, and is similar to proofs of generation 
of varieties by dense chains via density elimination (see [4,14]) or of properties such as interpolation and 
amalgamation via cut elimination (see, e.g., [7,18]).

The second main contribution is the introduction of a first analytic (cut-free) proof calculus for �-groups. 
In contrast to the well-developed proof theory for well-behaved families of varieties of residuated lattices 
(which provide algebraic semantics for substructural logics, see [2,3,7,14,17,18]), there has been relatively 
little success in obtaining cut-free systems for algebraic structures related to �-groups. Hypersequent calculi 
have been defined for abelian �-groups and related varieties in [13,15–17], but a calculus for the general 
non-commutative case has until now been lacking. The virtue of such a calculus is illustrated by the fact 
that we obtain not only the known decidability result for the equational theory of �-groups, but also, via cut 
elimination, a (first) procedure for obtaining proofs of valid �-group identities in equational logic (i.e., using 
only defining identities of LG). More generally, the analytic hypersequent calculus presented here provides a 
crucial first step towards developing a uniform proof theory for the wide range of algebras and logics related 
in some way to �-groups: in particular, MV-algebras and GMV-algebras (which may be viewed as intervals 
in abelian �-groups [20] and �-groups [6,8], respectively) and commutative cancellative residuated lattices 
(which may be viewed as �-groups with a co-nucleus [19]).

The final contribution of the paper is a first proof that the equational theory of �-groups is co-NP 
complete, matching the complexity of the equational theories of both abelian �-groups [21] and distributive 
lattices [12].

2. Preliminaries

Let us call a variable x and its inverse x−1 literals. Using De Morgan identities valid in all �-groups, we 
consider only normalized �-group terms s, t built from literals and the operation symbols 1, ∧, ∨, and ·, 
with an inductively defined inverse:

1 = 1 (s · t) = t · s
x = x−1 (s ∧ t) = s ∨ t

x−1 = x (s ∨ t) = s ∧ t.
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