ELSEVIER

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

A problem of Laczkovich: How dense are set systems with no large independent sets?

Péter Komjáth¹

Institute of Mathematics, Eötvös University, Budapest, P.O. Box 120, 1518, Hungary

ARTICLE INFO	A B S T R A C T
Article history: Available online 13 May 2016	We investigate the function $L_{\mathcal{H}}(n) = \max\{ \mathcal{H} \cap \mathcal{P}(A) : A = n\}$ where \mathcal{H} is a set of finite subsets of λ such that every λ -sized subset of λ has arbitrarily large subsets form \mathcal{H} . For $\kappa = \aleph_1$, $\lim L_{\mathcal{H}}(n)/n \to \infty$ and $L_{\mathcal{H}}(n) = O(n^2)$, and in different models of set theory, either bound can be sharp. If $\lambda > \aleph_1$, $L_{\mathcal{H}}(n) > cn^2$ for some $c > 0$ and n sufficiently large. If λ is strong limit singular, then $L_{\mathcal{H}}$ is superpolynomial. If $\kappa < \lambda$ are uncountable cardinals, we call a family \mathcal{H} κ -dense (strongly κ -dense) in λ if every κ -sized subset of λ contains a set (arbitrarily large sets) in \mathcal{H} . We show under GCH that if \mathcal{H} is κ^+ -dense in κ^{+r} (r finite), then $L_{\mathcal{H}}(n)/n^r \to \infty$ ($\kappa = \omega$) and $L_{\mathcal{H}}(n) > cn^{r+1}$ ($\kappa > \omega$). We also give bounds for $L_{\mathcal{H}}(n)$ when \mathcal{H} has large chromatic or coloring number.
MSC: 03E05 03E35 03E50 05C65	
<i>Keywords:</i> Infinite set systems	
Chromatic number Independent set Forcing	© 2016 Elsevier B.V. All rights reserved.

Miklós Laczkovich raised the following question [7]. Assume that the system \mathcal{H} consisting of finite subsets of ω_1 is *strongly dense*, i.e., for every uncountable subset X of ω_1 , there are arbitrarily large members of \mathcal{H} which are subsets of X. What is the behavior of the function

$$L_{\mathcal{H}}(n) = \max\left\{ |\mathcal{H} \cap \mathcal{P}(x)| : x \in [\omega_1]^n \right\},\$$

how fast must it converge to infinity? It is easy to see that $cn \leq L_{\mathcal{H}}(n) \leq 2^n$ $(n > n_0)$ for some c > 0. (The terms dense and strongly dense are ad hoc names used only in this paper in order to formulate the results.) The simplest way to construct a strongly dense system of finite sets of ω_1 is if we select a sequence $2 \leq r_0 < r_1 < \cdots$ of natural numbers and set $x \in \mathcal{H}$ iff $|x| = r_i$ for some $i < \omega$. In this case, however, $L_{\mathcal{H}}(n)$ is large for many values, namely, if $n = 2r_i$, then $L_{\mathcal{H}}(n)$ is at least

$$\binom{n}{\frac{n}{2}} \sim c \frac{1}{\sqrt{n}} 2^n$$

E-mail address: kope@cs.elte.hu.

 $^{^1\,}$ Research supported by the Hungarian National Research Grant OTKA K 81121.

where $c = \sqrt{2/\pi}$. The question is, therefore, if $L_{\mathcal{H}}$ can be uniformly small, e.g., polynomial, etc.

The function was first introduced (in a slightly different form) in the paper [1] of Erdős, Galvin, and Hajnal. They were only interested in uniform systems, specifically, what finite subsystems must occur in every uncountably chromatic system of 3-element sets. They also considered the following related question. If $\mathcal{H} \subseteq [\omega_1]^3$ is dense in ω_1 , then what finite configurations must appear. Some of the problems raised in [1] have recently been solved in my paper [5].

In the first part of the paper we investigate Laczkovich's original question. We show that there is a strongly dense system \mathcal{H} with $L_{\mathcal{H}}(n) = \mathcal{O}(n^2)$ (Theorem 1). For every strongly dense system $L_{\mathcal{H}}(n)/n \to \infty$ (Theorem 2), and conversely, if the Continuum Hypothesis holds, then for every monotonic $f : \omega \to \omega$ with $f(n) \to \infty$ there is a strongly dense system with the above condition such that $L_{\mathcal{H}}(n) = \mathcal{O}(nf(n))$ (Theorem 3). This statement is also consistent with $2^{\aleph_0} = \aleph_2$ (Theorems 5, 6). If, however, Martin's axiom MA_{ω_1} holds, then $L_{\mathcal{H}}(n) > cn^2$ $(n > n_0)$ holds for these systems (Theorem 4). In Lemma 7 we consider the weaker property that $\mathcal{H} \subseteq [\omega_1]^{<\omega}$ contains arbitrarily large subsets of every closed, unbounded subset of ω_1 . We show that there is such an \mathcal{H} with $L_{\mathcal{H}}(n) \leq n-1$ and $\limsup L_{\mathcal{H}}(n)/n \geq 1$ holds for every \mathcal{H} with this property.

In the second part of the paper, we make remarks concerning the general case when the underlying set is some uncountable cardinal λ and \mathcal{H} , a system of finite subsets of λ is *dense* or *strongly dense in* λ , that is, every subset of λ of cardinality λ contains an element (arbitrarily large elements) of \mathcal{H} .

In Lemma 8 we show that every dense system is either uniform or strongly dense, at least, if we restrict to a subset of full cardinality. We then show that if $\lambda > \omega_1$, then $L_{\mathcal{H}}(n) > cn^2$ for some c > 0 and if $2^{\kappa} = \kappa^+$ then for every $\varepsilon > 0$ there exists a strongly dense \mathcal{H} in κ^+ with $L_{\mathcal{H}}(n) < \varepsilon n^2$. If λ is a strong limit singular cardinal, $\mathcal{H} \subseteq [\lambda]^{<\omega}$ is strongly dense in λ , then $L_{\mathcal{H}}(n)$ increases faster than any polynomial of n.

In the next part of the paper we consider the following variant of the problem. Let $\kappa < \lambda$ be uncountable cardinals and let $\mathcal{H} \subseteq [\lambda]^{<\omega}$ be a set system such that for every $s \in [\lambda]^{\kappa}$, there is $x \in \mathcal{H}$ such that $x \subseteq s$ $(\mathcal{H} \text{ is } \kappa\text{-dense in } \lambda)$ or $\sup\{|x| : x \in \mathcal{H}, x \subseteq s\} = \omega$ ($\mathcal{H} \text{ is strongly } \kappa\text{-dense in } \lambda$). We show that if GCH holds, $1 \leq r < \omega, \mathcal{H} \text{ is } \kappa^+\text{-dense in } \kappa^{+r}$, and $|x| \geq r+1$ ($x \in \mathcal{H}$), then $L_{\mathcal{H}}(n)/n^r \to \infty$ ($\kappa = \omega$) and $L_{\mathcal{H}}(n) > cn^{r+1}$ ($\kappa > \omega$). Further, if $f(n) \to \infty$, then there is a cardinality and GCH preserving forcing extension in which there is an ω_1 -dense system \mathcal{H} in ω_2 with $|x| \geq 3$ ($x \in \mathcal{H}$). Finally, if $f(n) \to \infty$, there is a forcing extension with a strongly ω_1 dense \mathcal{H} in ω_{ω} with $L_{\mathcal{H}}(n) = O(n^2 f(n))$.

In the last part of the paper we consider the more general classes of set systems with large chromatic or coloring number. We show that if $\operatorname{Col}(\mathcal{H})$ is uncountable, then $\lim L_{\mathcal{H}}(n)/n = \infty$ (Theorem 17). This extends Theorem 2 as if $\mathcal{H} \subseteq [\omega_1]^{<\omega}$ is dense, then $\operatorname{Chr}(\mathcal{H}) > \omega$, consequently $\operatorname{Col}(\mathcal{H}) > \omega$. Theorem 18 is a result in the other direction: if $f(n) \to \infty$, then there is a system \mathcal{H} of cardinality ω_1 with $\operatorname{Col}(\mathcal{H}) > \omega$ and $L_{\mathcal{H}}(n) = \operatorname{O}(nf(n))$, and also there is an system \mathcal{H} of cardinality continuum with $\operatorname{Chr}(\mathcal{H}) > \omega$ and $L_{\mathcal{H}}(n) = \operatorname{O}(nf(n))$.

In Theorem 19 we show that if \mathcal{H} is a system consisting of k-tuples with $\operatorname{Col}(\mathcal{H}) > \omega$, then $L_{\mathcal{H}}(n) > c_k n^{1+\frac{1}{k-1}}$ for n sufficiently large. Theorem 20 complements this result by showing that if κ is regular, $2 \le k < \omega$, then there is a hypergraph \mathcal{H} consisting of k-tuples of κ^{+k-1} , with $\operatorname{Col}(\mathcal{H}) > \kappa$ and $L_{\mathcal{H}}(n) = \operatorname{O}(n^{1+\frac{1}{k-1}})$. A similar result for the chromatic number is proved in [1].

Notation. Definitions. If κ is an infinite cardinal, $\kappa = \aleph_{\alpha}$, then $\kappa^+ = \aleph_{\alpha+1}$ and $\kappa^{+r} = \aleph_{\alpha+r}$. If κ is a cardinal, $r < \omega$, we define $\exp_r(\kappa)$ by recursion on r as follows: $\exp_0(\kappa) = \kappa$, $\exp_{r+1}(\kappa) = 2^{\exp_r(\kappa)}$. If S is a set, κ a cardinal, $[S]^{\kappa} = \{x \subseteq S : |x| = \kappa\}$, $[S]^{<\kappa} = \{x \subseteq S : |x| < \kappa\}$. If A, B are sets of ordinals, A < B denotes that $\alpha < \beta$ holds for $\alpha \in A$, $\beta \in B$. If x is a finite set of ordinals, $|x| \ge 2$, then e(x) is the set of the last two elements of x.

If A is a set of ordinals, then $Add(\omega, A)$ is the forcing adding a Cohen real to each element of A, namely, $p \in Add(\omega, A)$ iff p is a function, $Dom(p) \in [A \times \omega]^{<\omega}$, $Ran(p) \subseteq 2$, $q \leq p$ iff q extends p.

A system \mathcal{H} of sets is *uniform*, if |x| = |y| holds for $x, y \in \mathcal{H}$.

Download English Version:

https://daneshyari.com/en/article/4661643

Download Persian Version:

https://daneshyari.com/article/4661643

Daneshyari.com