Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Models of intuitionistic set theory in subtoposes of nested realizability toposes

Samuele Maschio^a, Thomas Streicher^{b,*}

^a Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova, Italy
^b FB4 Mathematik, TU Darmstadt, Schloßgartenstr. 7, D-64289 Darmstadt, Germany

ARTICLE INFO

Article history: Received 31 March 2014 Received in revised form 7 January 2015 Accepted 3 March 2015 Available online 21 March 2015

MSC: 03G30 18B05 18B25

18C10

Keywords: Algebraic set theory Toposes Generalised realizability

ABSTRACT

In [8] Joyal and Moerdijk have shown that realizability toposes over partial combinatory algebras (pca) host classes of *small maps* giving rise to initial ZF-algebras providing models of intuitionistic Zermelo–Fraenkel set theory IZF. Here we show that this can be extended to a much wider class of realizability toposes as considered in [4] and [3].

For this purpose we first show this result for *nested realizability toposes* $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$ induced by a pca \mathcal{A} together with a sub-pca $\mathcal{A}_{\#}$ as considered implicitly in [4] and then show that it is preserved by restriction to subtoposes. This suffices since all toposes considered in [4] and [3] arise as subtoposes of some nested realizability toposes.

@ 2015 Elsevier B.V. All rights reserved.

0. Introduction

Given a partial combinatory algebra (pca) \mathcal{A} (see e.g. [13]) together with a subpca $\mathcal{A}_{\#}$ of \mathcal{A} we will construct the nested realizability topos $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$ as described in [4] (without giving it a proper name there). It is well known (from e.g. [13]) that $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$ appears as the exact/regular completion of its subcategory $\mathbf{Asm}(\mathcal{A}, \mathcal{A}_{\#})$ of assemblies. In [4] the authors considered two complementary subtoposes of $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$, namely the relative realizability topos $\mathbf{RT}_r(\mathcal{A}, \mathcal{A}_{\#})$ and the modified relative realizability topos $\mathbf{RT}_m(\mathcal{A}, \mathcal{A}_{\#})$, respectively.

Within nested realizability toposes we will identify a class of *small maps* giving rise to a model of intuitionistic set theory IZF (see [5,10]) as described in [8]. For this purpose we first identify a class of

* Corresponding author.

http://dx.doi.org/10.1016/j.apal.2015.03.002

E-mail addresses: maschio@math.unipd.it (S. Maschio), streicher@mathematik.tu-darmstadt.de (T. Streicher). *URL:* http://www.mathematik.tu-darmstadt.de/~streicher (T. Streicher).

^{0168-0072/© 2015} Elsevier B.V. All rights reserved.

display maps in $\operatorname{Asm}(\mathcal{A}, \mathcal{A}_{\#})$ which using a result of [1] gives rise to the desired class of small maps in the exact/regular completion $\operatorname{RT}(\mathcal{A}, \mathcal{A}_{\#})$ of $\operatorname{Asm}(\mathcal{A}, \mathcal{A}_{\#})$.

For showing that the subtoposes $\mathbf{RT}_r(\mathcal{A}, \mathcal{A}_{\#})$ and $\mathbf{RT}_m(\mathcal{A}, \mathcal{A}_{\#})$ also give rise to models of IZF we will prove the following general result. If \mathcal{E} is a topos with a class \mathcal{S} of small maps and \mathcal{F} is a subtopos of \mathcal{E} then there is a class $\mathcal{S}_{\mathcal{F}}$ of small maps in \mathcal{F} which is obtained by closing sheafifications of maps in \mathcal{S} under quotients in \mathcal{F} .

As explained in subsections 1.2.2 and 1.2.3 below this covers also the modified realizability topos as studied in [12] and the more recent Herbrand topos of van den Berg [3].

1. Nested realizability toposes and some of their subtoposes

Given a pca \mathcal{A} in an elementary topos \mathscr{S} we may construct the realizability topos $\mathbf{RT}_{\mathscr{S}}(\mathcal{A})$ relative to \mathcal{S} as described in [13]. If \mathscr{S} is the Sierpiński topos $\mathbf{Set}^{2^{\mathrm{op}}}$ then a "nested pca", i.e. a pca \mathcal{A} together with a subpca $\mathcal{A}_{\#}$ gives rise to a pca internal to $\mathbf{Set}^{2^{\mathrm{op}}}$ from which one may construct the "nested realizability topos" $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$ as described in [4,13].¹ Within $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$ there is a unique nontrivial subterminal object u giving rise to the *open* subtopos induced by the closure operator $u \to (-)$ and the complementary subtopos induced by the closure operator $u \to (-)$ and the complementary subtopos induced by the closure operator $u \to (-)$ as described in [4].

Next we will give more elementary descriptions of $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$ and the above mentioned subtoposes.

1.1. The nested realizability topos $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$

Let \mathcal{A} be a pca whose partial application is denoted by juxtaposition and $\mathcal{A}_{\#}$ be a subpca of \mathcal{A} , i.e. $\mathcal{A}_{\#}$ is a subset of \mathcal{A} closed under application and there are elements k and s of \mathcal{A}_{\sharp} such that for all $x, y, z \in \mathcal{A}$ it holds that kxy = x, $sxyz \simeq xz(yz)$ and sxy is always defined. We write i for skk and \bar{k} for ki which, obviously, satisfy the equations ix = x and $\bar{k}xy = y$, respectively. We write p, p_0 and p_1 for elements of \mathcal{A} such that px_0x_1 is always defined and $p_i(px_0x_1) = x_i$ for i = 0, 1. For every natural number n we write \underline{n} for the corresponding numeral as defined in [13]. Notice that k, \bar{k}, p, p_0, p_1 and the numerals \underline{n} are all elements of $\mathcal{A}_{\#}$.

Since subsets of \mathcal{A} are the propositions of the realizability topos $\mathbf{RT}(\mathcal{A})$ it is useful to fix some notation for the propositional connectives

$$A \to B = \{a \in \mathcal{A} \mid ax \in B \text{ for all } x \in A\}$$
$$A \land B = \{pxy \mid x \in A, y \in B\}$$
$$A \lor B = (\{k\} \land A) \cup (\{\bar{k}\} \land B)$$

Propositions of the nested realizability topos $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$ will be pairs $A = (A_p, A_a) \in \mathcal{P}(\mathcal{A}) \times \mathcal{P}(\mathcal{A}_{\#})$ such that $A_a \subseteq A_p$ where we call A_p and A_a the set of *potential* and *actual* realizers, respectively. We write $\Sigma(\mathcal{A}, \mathcal{A}_{\#})$ for the set of these propositions. The above notation for propositional connectives is adapted to the current class of propositions as follows

$$A \to B = (A_p \to B_p, \mathcal{A}_{\#} \cap (A_p \to B_p) \cap (A_a \to B_a))$$
$$A \wedge B = (A_p \wedge B_p, A_a \wedge B_a)$$
$$A \vee B = (A_p \vee B_p, A_a \vee B_a)$$

For the realizability tripos $\mathscr{P}(\mathcal{A})$ induced by the pca \mathcal{A} see [13]. The nested realizability tripos $\mathscr{P}(\mathcal{A}, \mathcal{A}_{\#})$ over **Set** induced by the nested pca $\mathcal{A}_{\#} \subseteq \mathcal{A}$ is defined as follows. For a set I the fibre $\mathscr{P}(\mathcal{A}, \mathcal{A}_{\#})(I)$ is given by the set $\Sigma(\mathcal{A}, \mathcal{A}_{\#})^{I}$ preordered by the relation \vdash_{I} defined as

¹ In [4] they do not give a name to this topos and, moreover, write $\mathbf{RT}(\mathcal{A}, \mathcal{A}_{\#})$ for the relative realizability subtopos of the nested realizability topos.

Download English Version:

https://daneshyari.com/en/article/4661712

Download Persian Version:

https://daneshyari.com/article/4661712

Daneshyari.com