Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Categorical characterizations of the natural numbers require primitive recursion

Leszek Aleksander Kołodziejczyk^{a,1}, Keita Yokoyama^{b,*,2}

^a Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
^b School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan

ARTICLE INFO

Article history: Received 24 May 2014 Received in revised form 26 September 2014 Accepted 10 October 2014 Available online 30 October 2014

MSC: 03B30 03F35 03B15 03H15

Keywords: Reverse mathematics Nonstandard models Second-order logic Peano system Categorical sentences

ABSTRACT

Simpson and Yokoyama (2013) [9] asked whether there exists a characterization of the natural numbers by a second-order sentence which is provably categorical in the theory RCA_0^* . We answer in the negative, showing that for any characterization of the natural numbers which is provably true in WKL_0^* , the categoricity theorem implies Σ_1^0 induction.

On the other hand, we show that RCA_0^* does make it possible to characterize the natural numbers categorically by means of a set of second-order sentences. We also show that a certain Π_2^1 -conservative extension of RCA_0^* admits a provably categorical single-sentence characterization of the naturals, but each such characterization has to be inconsistent with WKL_0^* + superexp.

© 2014 Elsevier B.V. All rights reserved.

Inspired by a question of Väänänen (see e.g. [11] for some related work), Simpson and the second author [9] studied various second-order characterizations of $\langle \mathbb{N}, S, 0 \rangle$, with the aim of determining the reversemathematical strength of their respective categoricity theorems. One of the general conclusions is that the strength of a categoricity theorem depends heavily on the characterization. Strikingly, however, each of the categoricity theorems considered in [9] implies RCA₀, even over the much weaker base theory RCA₀^{*}, that is, RCA₀ with Σ_1^0 induction replaced by Δ_0^0 induction in the language with exponentiation. (For RCA₀^{*}, see [8].)

This leads to the following question.

* Corresponding author.

 $\label{eq:http://dx.doi.org/10.1016/j.apal.2014.10.003 \\ 0168-0072/© 2014 Elsevier B.V. All rights reserved.$

E-mail addresses: lak@mimuw.edu.pl (L.A. Kołodziejczyk), y-keita@jaist.ac.jp (K. Yokoyama).

 $^{^1\,}$ Supported in part by Polish National Science Centre Grant No. 2013/09/B/ST1/04390.

 $^{^2\,}$ Supported in part by JSPS Grant-in-Aid for Research Activity Start-up Grant No. 25887026.

Question 1 ([9, Question 5.3, slightly rephrased]). Does RCA_0^* prove the existence of a second-order sentence or set of sentences T such that $\langle \mathbb{N}, S, 0 \rangle$ is a model of T and all models of T are isomorphic to $\langle \mathbb{N}, S, 0 \rangle$? One may also consider the same question with RCA_0^* replaced by Π_2^0 -conservative extensions of RCA_0^* .

Naturally, to have any hope of characterizing infinite structures categorically, second-order logic has to be interpreted according to the *standard* semantics (sometimes also known as strong or Tarskian semantics), as opposed to the *general* (or Henkin) semantics. In other words, a second-order quantifier $\forall X$ really means "for *all* subsets of the universe" (or, as we would say in a set-theoretic context, "for all elements of the power set of the universe").

Question 1 admits multiple versions depending on whether we focus on RCA_0^* or consider other Π_2^0 -equivalent theories and whether we want the characterizations of the natural numbers to be sentences or sets of sentences. The most basic version, restricted to RCA_0^* and single-sentence characterizations, would read as follows:

Question 2. Does there exist a second-order sentence ψ in the language with one unary function f and one constant c such that RCA_0^* proves: (i) $\langle \mathbb{N}, S, 0 \rangle \models \psi$, and (ii) for every $\langle A, f, c \rangle$, if $\langle A, f, c \rangle \models \psi$, then there exists an isomorphism between $\langle \mathbb{N}, S, 0 \rangle$ and $\langle A, f, c \rangle$?

We answer Question 2 in the negative. In fact, characterizing $\langle \mathbb{N}, S, 0 \rangle$ not only up to isomorphism, but even just up to *equicardinality of the universe*, requires the full strength of RCA₀. More precisely:

Theorem 1. Let ψ be a second-order sentence in the language with one unary function f and one individual constant c. If WKL_0^* proves that $\langle \mathbb{N}, S, 0 \rangle \models \psi$, then over RCA_0^* the statement "for every $\langle A, f, c \rangle$, if $\langle A, f, c \rangle \models \psi$, then there exists a bijection between \mathbb{N} and A" implies RCA_0 .

Since RCA_0 is equivalent over RCA_0^* to a statement expressing the correctness of defining functions by primitive recursion [8, Lemma 2.5], Theorem 1 may be intuitively understood as saying that, for provably true single-sentence characterizations at least, "categorical characterizations of the natural numbers require primitive recursion".

Do less stringent versions of Question 1 give rise to "exceptions" to this general conclusion? As it turns out, they do. Firstly, characterizing the natural numbers by a *set* of sentences is already possible in RCA_0^* , in the following sense (for a precise statement of the theorem, see Section 4):

Theorem 2. There exists a Δ_0 -definable (and polynomial-time recognizable) set Ξ of $\Sigma_1^1 \wedge \Pi_1^1$ sentences such that RCA_0^* proves: for every $\langle A, f, c \rangle$, $\langle A, f, c \rangle$ satisfies all $\xi \in \Xi$ if and only if $\langle A, f, c \rangle$ is isomorphic to $\langle \mathbb{N}, S, 0 \rangle$.

Secondly, even a single-sentence characterization is possible in a Π_2^1 -conservative extension of RCA_0^* , at least if one is willing to consider rather peculiar theories:

Theorem 3. There is a Σ_2^1 sentence which is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in the theory $\mathsf{RCA}_0^* + \neg \mathsf{WKL}$.

Theorem 3 is not quite satisfactory, as the theory and characterization it speaks of are false in $\langle \omega, \mathcal{P}(\omega) \rangle$. So, another natural question to ask is whether a single-sentence characterization of the natural numbers can be provably categorical in a *true* Π_2^0 -conservative extension of RCA_0^* . We show that under an assumption just a little stronger than Π_2^0 -conservativity, the characterization from Theorem 3 is actually "as true as possible": Download English Version:

https://daneshyari.com/en/article/4661740

Download Persian Version:

https://daneshyari.com/article/4661740

Daneshyari.com