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In [5] E. Hrushovski proved the following theorem:

Theorem 0.1 (Hrushouvski’s New Strongly Minimal Set). There is a strongly minimal theory which is not
locally modular but does mot interpret an infinite group.

This refuted a conjecture of B. Zilber that a strongly minimal theory must either be locally modular or
interpret an infinite field (see [7]). Hrushovski’s method was extended and applied to many other questions,
for example to the fusion of two strongly minimal theories [4] or recently to the construction of a bad field
in [2].

There were also attempts to simplify Hrushovski’s original constructions. For the fusion this was the
content of [3]. I tried to give a short account of the New Strongly Minimal Set in a tutorial at the Barcelona
Logic Colloquium 2011. The present article is a slightly expanded version of that talk.

1. Strongly minimal theories

An infinite L-structure M is minimal if every definable subset of M is either finite or cofinite. A complete
L-theory T is strongly minimal if all its models are minimal. There are three typical examples:
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o Infinite sets without structure.
o Infinite vector spaces over a finite field.
e Algebraically closed fields.

The algebraic closure acl(A) of a subset A of M is the union of all finite A-definable subsets. In alge-
braically closed fields this coincides with the field-theoretic algebraic closure. In minimal structures acl has
a special property:

Lemma 1.1. In a minimal structure acl defines a pregeometry.

A pregeometry (M, Cl) is a set M with an operator CI : PB(M) — PB(M) such that for all X, Y C M and
a,be M

(a) X C Cl(X), (REFLEXIVITY)
(b) X CY = Cl(X) C CI(Y), (MONOTONICITY)
(¢) Cl(CI(X)) = Cl(X), (TRANSITIVITY)
(d) a€ ClI(Xb)\ ClI(X)=be Cl(Xa), (EXCHANGE)
(e) CI(X) is the union of all CI(A), (FINITE CHARACTER)

where A ranges over all finite subsets of X.
An operator with (a), (b) and (c) is called a closure operator. Note that (e) implies (b).

Proof of 1.1. All properties except EXCHANGE are true in general and do not need the minimality of M.
To prove the exchange property, assume a € acl(A4b) and b ¢ acl(Aa). There is a formula ¢(x,y) with
parameters in A such that ¢(M,b) contains a and is finite, say with m elements. We can choose ¢ in such
a way that ¢(M,b’) has at most m elements for all ¥’. Since b is not algebraic over Aa, ¢(a, M) must be
infinite. But M is minimal, so the complement —¢(a, M) is finite, say with n elements. Assume that there are
pairwise different elements ao, .. ., a,, such that each —¢(a;, M) has at most n elements. Then for some ¥/,
d(M,b") contains all the a;, which contradicts the choice of ¢. So there are at most m many o such that
—¢(a’, M) has n elements. This shows that a is algebraic over A. O

Let X be a subset of M. A basis of X is a subset X which generates X in the sense that X C CI(Xy)
and is independent, which means that no element x of X is in the closure X \ {z}.

Lemma 1.2. Every set X has a basis. All these bases have the same cardinality, the dimension of X.
Proof. See [6, Lemma C 1.6]. O

In the three examples given above the dimension is computed as follows: If M is an infinite set without
structure, the dimension of X is its cardinality. If M is an infinite vector space over a finite field, the
dimension of a subset is the linear dimension of the subspace it generates. If M is an algebraically closed
field, dim(X) is the transcendence degree of the subfield generated by X.

The dimension function, restricted to finite sets, has the following properties:

(1) dim(0) =
(2) dim({a )
(3) dim(AU B) + dlm(A N B) < dim(A4) 4 dim(B). (SUBMODULARITY)
(4) AC B = dim(A) < dim(B). (MONOTONICITY)
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