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We give an exposition of Hrushovski’s New Strongly Minimal Set (1993): A strongly
minimal theory which is not locally modular but does not interpret an infinite field.
We give an exposition of his construction.
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In [5] E. Hrushovski proved the following theorem:

Theorem 0.1 (Hrushovski’s New Strongly Minimal Set). There is a strongly minimal theory which is not
locally modular but does not interpret an infinite group.

This refuted a conjecture of B. Zilber that a strongly minimal theory must either be locally modular or
interpret an infinite field (see [7]). Hrushovski’s method was extended and applied to many other questions,
for example to the fusion of two strongly minimal theories [4] or recently to the construction of a bad field
in [2].

There were also attempts to simplify Hrushovski’s original constructions. For the fusion this was the
content of [3]. I tried to give a short account of the New Strongly Minimal Set in a tutorial at the Barcelona
Logic Colloquium 2011. The present article is a slightly expanded version of that talk.

1. Strongly minimal theories

An infinite L-structure M is minimal if every definable subset of M is either finite or cofinite. A complete
L-theory T is strongly minimal if all its models are minimal. There are three typical examples:
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• Infinite sets without structure.
• Infinite vector spaces over a finite field.
• Algebraically closed fields.

The algebraic closure acl(A) of a subset A of M is the union of all finite A-definable subsets. In alge-
braically closed fields this coincides with the field-theoretic algebraic closure. In minimal structures acl has
a special property:

Lemma 1.1. In a minimal structure acl defines a pregeometry.

A pregeometry (M,Cl) is a set M with an operator Cl : P(M) → P(M) such that for all X,Y ⊂ M and
a, b ∈ M

(a) X ⊂ Cl(X), (Reflexivity)
(b) X ⊂ Y ⇒ Cl(X) ⊂ Cl(Y ), (Monotonicity)
(c) Cl(Cl(X)) = Cl(X), (Transitivity)
(d) a ∈ Cl(Xb) \ Cl(X) ⇒ b ∈ Cl(Xa), (Exchange)
(e) Cl(X) is the union of all Cl(A), (Finite character)

where A ranges over all finite subsets of X.
An operator with (a), (b) and (c) is called a closure operator. Note that (e) implies (b).

Proof of 1.1. All properties except Exchange are true in general and do not need the minimality of M .
To prove the exchange property, assume a ∈ acl(Ab) and b /∈ acl(Aa). There is a formula φ(x, y) with
parameters in A such that φ(M, b) contains a and is finite, say with m elements. We can choose φ in such
a way that φ(M, b′) has at most m elements for all b′. Since b is not algebraic over Aa, φ(a,M) must be
infinite. But M is minimal, so the complement ¬φ(a,M) is finite, say with n elements. Assume that there are
pairwise different elements a0, . . . , am such that each ¬φ(ai,M) has at most n elements. Then for some b′,
φ(M, b′) contains all the ai, which contradicts the choice of φ. So there are at most m many a′ such that
¬φ(a′,M) has n elements. This shows that a is algebraic over A. �

Let X be a subset of M . A basis of X is a subset X0 which generates X in the sense that X ⊂ Cl(X0)
and is independent, which means that no element x of X0 is in the closure X0 \ {x}.

Lemma 1.2. Every set X has a basis. All these bases have the same cardinality, the dimension of X.

Proof. See [6, Lemma C 1.6]. �
In the three examples given above the dimension is computed as follows: If M is an infinite set without

structure, the dimension of X is its cardinality. If M is an infinite vector space over a finite field, the
dimension of a subset is the linear dimension of the subspace it generates. If M is an algebraically closed
field, dim(X) is the transcendence degree of the subfield generated by X.

The dimension function, restricted to finite sets, has the following properties:

(1) dim(∅) = 0.
(2) dim({a}) � 1.
(3) dim(A ∪B) + dim(A ∩B) � dim(A) + dim(B). (Submodularity)
(4) A ⊂ B ⇒ dim(A) � dim(B). (Monotonicity)
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