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We recover the essentials of þ-forking, rosiness and super-rosiness for certain amalgamation
classes K , and thence of finite-variable theories of finite structures. This provides a
foundation for a model-theoretic analysis of a natural extension of the “Lk-Canonization
Problem” – the possibility of efficiently recovering finite models of T given a finite
presentation of an Lk-theory T . Some of this work is accomplished through different sorts
of “transfer” theorem (of varying degrees of subtlety) to the first-order theory T lim of
the direct limit. Our results include, to start with, a recovery of the basic technology
of þ-independence (analogous to Onshuus (2006) [15]) using a rather straightforward
transfer. We also recover an analog of the “þ-Independence theorems” of Ealy and Onshuus
(2007) [7] for amalgamation classes and their limits by showing how to transfer/lift
an abstract independence relation |◦� on the amalgamation class to the limit theory
T lim. We also work out an appropriate notion of Local Character for independence
relations over classes finite structures, and we use this to verify that rosiness and
super-rosiness-with-finite-U þ-ranks coincide in these amalgamation classes and their limit
theories.

© 2013 Published by Elsevier B.V.

Introduction

This article is the first of a three-part series (with [10] and [11]) examining the intrinsic geometry of an algorithmic
problem – the Lk-Canonization Problem – which is well-known to finite-model theorists and some complexity theorists.
Lk denotes the fragment of first-order logic consisting of formulas with at most k distinct variables, free or bound, and it
can be shown that for any finite structure M (in a finite relational signature), its complete k-variable theory T hk(M)

is finitely axiomatizable in a uniform way. The Lk-Canonization Problem asks us to devise an operator F that takes the
theories T hk(M) to finite models F (T hk(M)) |� T hk(M) – thus, defining a “canonical” model of each complete k-variable
theory that does have finite models. Composing the canonization operator F with the mapping M �→ T hk(M), the operator
F (T hk(−)) can be thought of as a solution to a natural relaxation of the Graph Isomorphism Problem, the status of which
is a major open problem in complexity theory (see [19] for an old survey).

Although this problem is certainly unsolvable over the class of all L3-theories [8], it has been shown that for the class of
stable Lk-theories and for the class of super-simple Lk-theories with trivial forking dependence (with additional amalgama-
tion assumptions), the Lk-Canonization Problem is recursively solvable (see [4] and [5], respectively). In both of those cases,
resolution of the Lk-Canonization Problem is reduced to showing that certain complete first-order theories associated with
the original Lk-theories have the finite sub-model property. Thus, after the heavy lifting done by the model theory, the algo-
rithm itself is extremely simple-minded. Moreover, the analyses in [4] and [5] do not assume a priori that the Lk-theories in
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question certainly have finite models. In contrast, in this series of articles, we will examine the Lk-Canonization Problem for
Lk-theories that do certainly have finite models. Moreover, we will consider implementation of Lk-Canonization operators
in a significantly restricted model of computation, leading to a notion we call “efficient constructibility.” Finally, we will
expand the original Lk-Canonization Problem to take whole Lk-elementary diagrams as input, which allows us to work with
individual Lk-theories in a non-trivial way. Thus, the goal of this series of articles is to prove the following:

Main Theorem. Let M0 be a finite structure, and let K be the class of all finite models of T = T hk(M0). Assuming that K has adequate
amalgamation properties, let T lim be the complete first-order theory of the direct limit of K . Then the following are equivalent:

1. T lim is super-rosy of finite U þ-rank.
2. K is rosy.
3. K is efficiently constructible – meaning that in a certain weak model of computation (exposed in [10]), the following problem is

computable:

K-Construction problem:
Given M[A] for some (implicit) M ∈ K and A ⊆ M,1

Return N ∈ K such that A ⊆ N and N [A] =M[A].

The equivalence of (1) and (2) in the main theorem is, indeed, intuitively obvious, and this suggests that the statement,
“K is rosy” may have no substantial content of its own. However, proving the equivalence with (3) seems to require that we
first make sense of rosiness and þ-independence in K in its own right. In particular, the proof requires a characterization of
rosiness by abstract independence relations that accommodate only triples of finite sets. Thus, in this article, we will settle
on what is meant by “K is rosy” and work out just how the rosiness of K and that of T lim interact. In a final section of the
article, we will also see that much of the development does not really require the context of k-variable logic – the more
general context of “super-robust classes” of finite structures is actually sufficient.

1. Background and the main setting

1.1. Finite-variable logics

Finite-variable fragments of first-order logic, Lk , were formulated by many authors independently (e.g. [18], but our main
references have been [16] and [13]). The importance of Lk and its infinitary extension Lk∞,ω in finite-model theory is difficult

to overstate. For our purposes, Lk is satisfying because a “complete” Lk-theory – that is, complete for Lk-sentences – can
have many non-isomorphic finite models, which is surely a prerequisite for bringing classical model-theoretic ideas to bear
in finite-model theory.

Definition 1.1. Let � be a finite relational signature. Assume k � ari(�) = max{ari(R): R ∈ �} and k � 2.

1. Fix a set X = {x1, . . . , xk} of exactly k distinct variables. Then, L X = L X
� is the fragment of the first-order logic L = L�

keeping only those formulas all of whose variables, free or bound, come from X . If V = {x0, x1, . . . , xn, . . .} is the infinite
set of first-order variables understood in the construction of the full first-order logic, then Lk = ⋃{L X : X ∈ (V

k

)}, where(V
k

)
is the set of k-element subsets of V .

As usual, we write φ(x1, . . . , xk) to mean that the set of free variables of φ is a subset of {x1, . . . , xk}, but not necessarily
identical to it.

2. For a �-structure M, the k-variable theory of M, denoted T hk(M) is the set of sentences φ of Lk such that M |� φ.
Note that T hk(M) is complete with respect to k-variable sentences in that either φ ∈ T hk(M) or ¬φ ∈ T hk(M) for
every k-variable sentence φ.

3. For a k-tuple a ∈ Mk , we set tpk(a;M) = {φ(x1, . . . , xk) ∈ Lk: M |� φ(a)} and if T = T hk(M), then Sk
k(T ) =

{tpk(a;M): a ∈ Mk}.
It can be shown – in a number of ways – that for a complete Lk-theory T , T has a finite model only if Sk

k(T ) is finite.
All of those methods also show that Sk

k(T ) is an invariant of T = T hk(M) rather than M itself – that is, if T hk(N ) = T

for some other �-structure N (equivalently, if N ≡k M), then {tpk(b;N ): b ∈ Nk} = Sk
k(T ), too. Finally, it can also be

shown that if M is finite, then T hk(M) is finitely axiomatizable, and in fact, the mapping M �→ T hk(M) is computable
in Rel-Ptime (see [1]). This latter fact is the basis for our notion of efficient constructibility.

4. Let M be a �-structure, and let B ⊆ M . Then for X ∈ (V
k

)
as above and e : X → B ∪ X , we define L X (e) to be the set,{

φ
(
e(x1), . . . , e(xn)

)
: φ(x1, . . . , xn) ∈ L X}

.

1 Here M[A] denotes the induced substructure of M on the subset A, so M[A] does not carry any further information about M.
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