
Journal of Applied Logic 16 (2016) 72–91

Contents lists available at ScienceDirect

Journal of Applied Logic

www.elsevier.com/locate/jal

Behavioral equivalence of hidden k-logics: An abstract algebraic 

approach ✩

Sergey Babenyshev a, Manuel A. Martins b,∗

a Siberian Fire-Rescue Academy, Severnaya Str. 1, Zheleznogorsk, 662972, Russia
b CIDMA – Center for R&D in Mathematics and Applications, Dep. of Mathematics, U. Aveiro, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 February 2015
Received in revised form 27 October 
2015
Accepted 1 February 2016
Available online 4 March 2016

Keywords:
Behavioral equivalence
Hidden logic
Leibniz congruence

This work advances a research agenda which has as its main aim the application 
of Abstract Algebraic Logic (AAL) methods and tools to the specification and 
verification of software systems. It uses a generalization of the notion of an abstract 
deductive system to handle multi-sorted deductive systems which differentiate 
visible and hidden sorts. Two main results of the paper are obtained by generalizing 
properties of the Leibniz congruence — the central notion in AAL.
In this paper we discuss a question we posed in [1] about the relationship between 
the behavioral equivalences of equivalent hidden logics. We also present a necessary 
and sufficient intrinsic condition for two hidden logics to be equivalent.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Behavioral abstraction plays an important role in modern specification theory by providing a more 
satisfactory way to prove correctness of a program with respect to a given specification. Computational 
systems often have interfaces that encapsulate the local states of program objects and focus instead on the 
operations that modify the local states and some distinguished set of specific properties — attributes (in 
particular, these features are inherent to the object oriented (OO) paradigm). In order to implement this 
approach, many programming languages use techniques that hide internal data types, providing abstraction 
from unimportant details and protection for internal data.

Like a state of a transition system, a state of an OO program can be viewed as encapsulating all pertinent 
information about the abstract machine when it reaches a certain stage while executing a sequence of 
methods and procedures. The information about the local state conceptually is partitioned into a visible

✩ This work was supported in part by the Portuguese Foundation for Science and Technology FCT through CIDMA, within project
UID/MAT/04106/2013. The second author also acknowledges the financial assistance by EU FP7 Marie Curie PIRSES-GA-2012-318986
project GeTFun and the project FFI2013-47126-P by the Spanish Ministry of Research.
* Corresponding author.

E-mail address: martins@ua.pt (M.A. Martins).

http://dx.doi.org/10.1016/j.jal.2016.03.002
1570-8683/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jal.2016.03.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jal
mailto:martins@ua.pt
http://dx.doi.org/10.1016/j.jal.2016.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jal.2016.03.002&domain=pdf


S. Babenyshev, M.A. Martins / Journal of Applied Logic 16 (2016) 72–91 73

and a hidden part, with the former representing visible data, like attributes, and the latter representing the 
hidden states of objects in the OO paradigm. Methods can modify the hidden state of the object (giving, 
as a result, a new hidden state). Hidden states (data) can only be indirectly compared by considering the 
visible outputs of the same programs, applied to this hidden data. Using this approach, software can be 
designed according to a behavioral specification, the latter specifying certain visible behavior, instead of 
providing detailed requirements for all internal aspects of execution. In this respect, the above-mentioned 
approach turned out to be related to the coalgebraic approach (cf. [36]).

Behaviorally, two terms are said to be equivalent if and only if they cannot be distinguished in any visible 
context. This basic notion of behavioral equivalence is due to Reichel [47]. The idea of using the satisfaction 
relation on hidden terms for determining behavioral equivalence was also introduced by Reichel in the 80’s 
[47] and it seems to be a useful way of defining equivalence between hidden terms. In fact, in applied settings, 
there are some well designed pieces of software that may fail to satisfy their requirements strictly, but do 
satisfy them behaviorally, i.e., under any program executed on the system (see [2,5,8]). More formally, in 
such approach, the standard equality predicate is augmented by behavioral equivalence (two data elements 
representing states are said to be behaviorally equivalent if every function returns the same visible value 
when executed on the same visible input). Behavioral equivalence has been adopted and generalized by 
many researches. The most significant contributions have been provided by Goguen, Bidoit, Bouhoula and 
their associates.

Hidden algebras were introduced by Goguen in [19] and further developed in [21,24], in order to generalize 
many-sorted algebras to give an algebraic semantics for the object oriented paradigm. In fact, the behavioral 
aspects of modern software make hidden algebras in practice more suitable than standard algebras as 
abstract machine implementations. Consequently, there has been an increasing interest in this field. Goguen 
and his collaborators have been improving their theory and applying it in more general settings. Now 
almost all of the results may be established for the general setting of polyadic loose-data semantics. Polyadic 
loose-data semantics allow any kind of operation symbols and, in order to have more freedom in choosing 
an adequate implementation, the visible part of the algebras is no longer fixed: it may be any sorted 
algebra in which the requirements (axioms) of the given specification are valid. However, some authors 
are interested in applying coalgebraic methods, and therefore they have to restrict their signatures to the 
monadic fixed-data semantics. Malcolm [29] had shown that behavioral equivalence may be formulated in 
the context of coalgebra (see also [28] and [48]).

Several generalizations of the notion of behavioral equivalence have been considered. Goguen et al. [21,49]
consider Γ-behavioral equivalence, where Γ is a subset of the set of all operation symbols in the signature. 
Γ-behavioral equivalence is defined analogously to ordinary behavioral equivalence, but only makes use of 
the contexts built from the operation symbols in Γ. It can be proven that the Γ-behavioral equivalence is 
the largest Γ-congruence with the identity as the visible part. Based on this fact, the coinduction methods 
may still be formulated for this more general notion. Other interesting questions concerning Γ-behavioral 
equivalence also arise, such as the study of the compatibility of some operation symbols outside of Γ with 
respect to Γ-behavioral equivalence. This problem has been studied by Diaconescu et al. [16] and Bidoit 
et al. [3]. On the other hand, Bidoit and Hennicker [4] generalized the notion by endowing the hidden 
algebras with a binary relation, that may be partial. In particular, one can apply the algebraic approach to 
the behavioral setting by considering the algebras together with the Γ-behavioral equivalence.

Various notions of behavioral logics have been considered for reasoning about behavioral equivalence. 
The most relevant to the topic of this paper are the variations developed by Goguen et al. (hidden logics
[20,21]) and by Bidoit and Hennicker (observational logics [2,27]). These approaches formalize behavioral 
validity (correctness) as follows: hidden logic is a variant of the equational logic in which some part of the 
specification is visible and another is hidden. The basic syntactic structures for hidden logics are equations 
and the behavioral satisfaction relation is defined by interpreting the equality symbol as the behavioral 
equality. Observational logics are different from hidden logics in that respect that instead of dealing with 



Download English Version:

https://daneshyari.com/en/article/4662913

Download Persian Version:

https://daneshyari.com/article/4662913

Daneshyari.com

https://daneshyari.com/en/article/4662913
https://daneshyari.com/article/4662913
https://daneshyari.com

