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The main goal of this article is to introduce topological FLew-algebras and study 
their main properties. We also treat completions of FLew-algebras with respect to 
inductive family of filters. This work generalizes similar works on MV-algebras [10]
and on FLew-algebras equipped with uniform topologies [9].
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1. Introduction

Universal topological algebras (which are algebras with topologies with respect to which all operations are 
continuous) have been introduced and studied thoroughly (see e.g. [4,12,13,19]). Some of the notable classes 
of topological algebras that have been the objects of more detailed studies include groups [17], lattices [16], 
orthomodular lattices [5], MV-algebras [10].

A residuated lattice is a lattice equipped with a monotone monoidal operation � (with a unit e) and a 
pair of binary operations /, \ satisfying

x� y ≤ z if and only if x ≤ z/y if and only if y ≤ x\z

FL-algebras, which are residuated lattices expanded by a constant 0̄ [15], form the algebraic semantics for the 
so-called (intuitionistic) substructural logics. These provide a unifying framework for several kinds of logics 
(Girard’s linear logic, the Lambek calculus, Łukasiewicz’s many-valued logics, the Hájek fuzzy logics etc.). 
A very important subclass of FL-algebras is that of FLew-algebras, which are FL-algebras extended by the 
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exchange and weakening rules. An FLew-algebra (also known as bounded integral commutative residuated 
lattice) can be defined [7,11] as a bounded lattice (L, ∨, ∧, 0, 1) with two additional binary operations �, →
satisfying: (i) (L, �, 1) is a commutative monoid, and (ii) for all x, y, z ∈ L, x � y ≤ z if and only if x ≤
y → z. A nonempty subset F of an FLew-algebra L is called a filter of L if it satisfies: (F1) x � y ∈ F for all 
x, y ∈ F , and (F2) For all x, y ∈ L, if x ≤ y and x ∈ F , then y ∈ F . While, filters of an FLew-algebra are 
studied for their connection to its congruences, they primarily come from logic itself since they correspond 
to theories of the logic. Indeed, filters of an FLew-algebra L are just subsets of L that are closed under 
all deductions. Equivalently, in algebraic logic, filters are sets of designated elements that provide matricial 
models for the logic.

Among the many important subclasses of FLew-algebras, there is that of MV-algebras, which constitute 
the algebraic counterpart of Łukasiewicz many valued logic. In [10], Hoo introduced topological MV-algebras, 
and studied their main properties. A close analysis of Hoo’s work reveals that the essential ingredients 
are the existence of an adjoint pair of operations and the fact that ideals of MV-algebras correspond to 
its congruences. This prompted us to consider the same study in a more general context where similar 
ingredients are available, namely FLew-algebras. The main goal of the present work is to generalize Hoo’s 
work to FLew-algebras. This yields the notion of topological FLew-algebra, which is an FLew-algebra together 
with topology with respect to which all the operations are continuous. Topological FLew-algebras were 
already investigated in [9], but mainly for the uniform topology.

The paper is organized as follows. In Section 2, we study the general properties of topological 
FLew-algebras. In Section 3, we study a special class of topological FLew-algebras, namely those arising 
from decreasing families of filters indexed by directed sets. We establish conditions under which the result-
ing space has certain topological properties, and also study completions of topological FLew-algebras. In 
addition, we show that such FLew-algebras are Stone if and only of they are compact and Hausdorff.

Homomorphisms of FLew-algebras have the usual meaning.
A subset F of an FLew-algebras L is called a deductive system of L if:

(ds1) 1 ∈ F and (ds2) For every x, y ∈ L, if x, x → y ∈ F, then y ∈ F.

It is known that the notions of filters and deductive systems coincide (see e.g., [8]). We shall use solely the 
filter terminology in the entire article.

Filters of FLew-algebras induce congruences, indeed the following result is well-known.

Proposition 1.1. (See [18].) Let L be an FLew-algebra and let F be a filter of L. The relation x ≡F y if and 
only if x → y, y → x ∈ F is a congruence on L.

If F is a filter of L, the quotient FLew-algebra induced by the congruence ≡F shall be denoted by L/F . 
In addition the class of an element a ∈ L with respect to ≡F is often denoted by [a]F ; and πF denotes the 
natural projection L → L/F .

For every subset X ⊆ L, the smallest filter of L containing X (i.e., the intersection of all filters F of L
such that X ⊆ F ) is called the filter generated by X and will be denoted by 〈X〉.

If U and V are subsets of L and � ∈ {∨, ∧, →, �}, then

U � V := {x � y : x ∈ U, y ∈ V }

Remark 1.2. While some aspects of the paper could be treated in the more general context of FL-algebras, 
or even arbitrary residuated lattices, we restrict our study to bounded integral commutative residuated 
lattices (FLew-algebras). Our choice is mainly motivated by the fact that the definitions and notations 
in the FLew-algebras context are greatly simplified, and that once established, one could easily adapt the 
relevant results to that more general context.
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