Contents lists available at ScienceDirect

Journal of Applied Logic

www.elsevier.com/locate/jal

Topological FL_{ew}-algebras

Jean B. Nganou^{a,*}, Serge F.T. Tebu^b

Department of Mathematics, University of Oregon, Eugene, OR 97403, United States ^b Department of Mathematics, University of Yaounde I, Cameroon

ARTICLE INFO

Article history: Received 22 October 2014 Accepted 24 April 2015 Available online 5 May 2015

Keywords: Complete MV-algebra Inductive family Heyting algebra Topological FL_{ew}-algebra Profinite FL_{ew}-algebra Stone FL_{ew}-algebra

1. Introduction

Universal topological algebras (which are algebras with topologies with respect to which all operations are continuous) have been introduced and studied thoroughly (see e.g. [4,12,13,19]). Some of the notable classes of topological algebras that have been the objects of more detailed studies include groups [17], lattices [16], orthomodular lattices [5], MV-algebras [10].

A residuated lattice is a lattice equipped with a monotone monoidal operation \odot (with a unit e) and a pair of binary operations $/, \setminus$ satisfying

 $x \odot y \le z$ if and only if $x \le z/y$ if and only if $y \le x \setminus z$

FL-algebras, which are residuated lattices expanded by a constant $\bar{0}$ [15], form the algebraic semantics for the so-called (intuitionistic) substructural logics. These provide a unifying framework for several kinds of logics (Girard's linear logic, the Lambek calculus, Łukasiewicz's many-valued logics, the Hájek fuzzy logics etc.). A very important subclass of FL-algebras is that of FL_{ew}-algebras, which are FL-algebras extended by the

Corresponding author. E-mail addresses: nganou@uoregon.edu (J.B. Nganou), fsttagne@hotmail.fr (S.F.T. Tebu).

http://dx.doi.org/10.1016/j.jal.2015.04.004 1570-8683/© 2015 Elsevier B.V. All rights reserved.

ABSTRACT

The main goal of this article is to introduce topological FL_{ew}-algebras and study their main properties. We also treat completions of FL_{ew}-algebras with respect to inductive family of filters. This work generalizes similar works on MV-algebras [10] and on FL_{ew}-algebras equipped with uniform topologies [9]

© 2015 Elsevier B.V. All rights reserved.

exchange and weakening rules. An $\operatorname{FL}_{\operatorname{ew}}$ -algebra (also known as bounded integral commutative residuated lattice) can be defined [7,11] as a bounded lattice $(L, \lor, \land, 0, 1)$ with two additional binary operations \odot, \rightarrow satisfying: (i) $(L, \odot, 1)$ is a commutative monoid, and (ii) for all $x, y, z \in L, x \odot y \leq z$ if and only if $x \leq y \rightarrow z$. A nonempty subset F of an $\operatorname{FL}_{\operatorname{ew}}$ -algebra L is called a filter of L if it satisfies: (F1) $x \odot y \in F$ for all $x, y \in F$, and (F2) For all $x, y \in L$, if $x \leq y$ and $x \in F$, then $y \in F$. While, filters of an $\operatorname{FL}_{\operatorname{ew}}$ -algebra are studied for their connection to its congruences, they primarily come from logic itself since they correspond to theories of the logic. Indeed, filters of an $\operatorname{FL}_{\operatorname{ew}}$ -algebra L are just subsets of L that are closed under all deductions. Equivalently, in algebraic logic, filters are sets of designated elements that provide matricial models for the logic.

Among the many important subclasses of FL_{ew} -algebras, there is that of MV-algebras, which constitute the algebraic counterpart of Łukasiewicz many valued logic. In [10], Hoo introduced topological MV-algebras, and studied their main properties. A close analysis of Hoo's work reveals that the essential ingredients are the existence of an adjoint pair of operations and the fact that ideals of MV-algebras correspond to its congruences. This prompted us to consider the same study in a more general context where similar ingredients are available, namely FL_{ew} -algebras. The main goal of the present work is to generalize Hoo's work to FL_{ew} -algebras. This yields the notion of topological FL_{ew} -algebra, which is an FL_{ew} -algebra together with topology with respect to which all the operations are continuous. Topological FL_{ew} -algebras were already investigated in [9], but mainly for the uniform topology.

The paper is organized as follows. In Section 2, we study the general properties of topological FL_{ew} -algebras. In Section 3, we study a special class of topological FL_{ew} -algebras, namely those arising from decreasing families of filters indexed by directed sets. We establish conditions under which the resulting space has certain topological properties, and also study completions of topological FL_{ew} -algebras. In addition, we show that such FL_{ew} -algebras are Stone if and only of they are compact and Hausdorff.

Homomorphisms of FL_{ew}-algebras have the usual meaning.

A subset F of an FL_{ew}-algebras L is called a deductive system of L if:

(ds1) $1 \in F$ and (ds2) For every $x, y \in L$, if $x, x \to y \in F$, then $y \in F$.

It is known that the notions of filters and deductive systems coincide (see e.g., [8]). We shall use solely the filter terminology in the entire article.

Filters of FL_{ew}-algebras induce congruences, indeed the following result is well-known.

Proposition 1.1. (See [18].) Let L be an FL_{ew} -algebra and let F be a filter of L. The relation $x \equiv_F y$ if and only if $x \to y, y \to x \in F$ is a congruence on L.

If F is a filter of L, the quotient FL_{ew} -algebra induced by the congruence \equiv_F shall be denoted by L/F. In addition the class of an element $a \in L$ with respect to \equiv_F is often denoted by $[a]_F$; and π_F denotes the natural projection $L \to L/F$.

For every subset $X \subseteq L$, the smallest filter of L containing X (i.e., the intersection of all filters F of L such that $X \subseteq F$) is called the filter generated by X and will be denoted by $\langle X \rangle$.

If U and V are subsets of L and $\star \in \{ \lor, \land, \rightarrow, \odot \}$, then

$$U \star V := \{x \star y : x \in U, y \in V\}$$

Remark 1.2. While some aspects of the paper could be treated in the more general context of FL-algebras, or even arbitrary residuated lattices, we restrict our study to bounded integral commutative residuated lattices (FL_{ew}-algebras). Our choice is mainly motivated by the fact that the definitions and notations in the FL_{ew}-algebras context are greatly simplified, and that once established, one could easily adapt the relevant results to that more general context.

Download English Version:

https://daneshyari.com/en/article/4662979

Download Persian Version:

https://daneshyari.com/article/4662979

Daneshyari.com