INFINITELY MANY SOLUTIONS FOR AN ELLIPTIC PROBLEM INVOLVING CRITICAL NONLINEARITY＊

Cao Daomin（曹道民）
Institute of Applied Mathematics，AMSS，Chinese Academy of Sciences，Beijing 100190，China
E－mail：dmcao＠amt．ac．cn
Yan Shusen（严树森）
Department of Mathematics，The University of New England，Armidale NSW 2351，Australia

E－mail：syan＠turing．une．edu．au

Abstract We study the following elliptic problem：

$$
\begin{cases}-\operatorname{div}(a(x) D u)=Q(x)|u|^{2^{*}-2} u+\lambda u & x \in \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Under certain assumptions on a and Q ，we obtain existence of infinitely many solutions by variational method．

Key words semilinear elliptic equations；infinitely many solutions；variational method 2000 MR Subject Classification 35J20；35J70

1 Introduction

Let $N \geq 3,2^{*}=\frac{2 N}{N-2}$ ，and Ω be an open bounded domain in \mathbb{R}^{N} ．We consider the following elliptic problem：

$$
\begin{cases}-\operatorname{div}(a(x) D u)=Q(x)|u|^{2^{*}-2} u+\lambda u & x \in \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $a, Q \in C^{4}(\bar{\Omega}), a(x) \geq a_{0}>0, Q(x) \geq Q_{0}>0$ ，and $\lambda>0$ is a positive constant．
The functional corresponding to（1．1）is

$$
\begin{equation*}
I(u)=\frac{1}{2} \int_{\Omega}\left(a(x)|D u|^{2}-\lambda u^{2}\right) \mathrm{d} x-\frac{1}{2^{*}} \int_{\Omega} Q(x)|u|^{2^{*}} \mathrm{~d} x, \quad u \in H_{0}^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

Since the embedding of $H_{0}^{1}(\Omega)$ into $L^{2^{*}}(\Omega)$ is not compact，the functional $I(u)$ does not satisfies the Palais－Smale condition（（PS）condition for short）．This loss of compactness creates a lot of difficulties when variational method is used to obtain the existence result for（1．1）．

[^0]Let us first recall some well known results for problem (1.1) when $a(x) \equiv 1$ and $Q(x) \equiv 1$. By using the Pohozaev identity [17], problem (1.1) has no nontrivial solution if $\lambda \leq 0$ and Ω is star-shaped. On the other hand, Brezis and Nirenberg [6] proved that if $N \geq 4$ and $\lambda \in\left(0, \lambda_{1}\right)$, where λ_{1} is the first eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega),(1.1)$ has a positive solution, while it was proved by Capozzi, Fortunato and Palmieri [9], Ambrosetti and Struwe [2] that (1.1) has a nontrivial solution if $N \geq 4$ and $\lambda>0$. Concerning the multiplicity results for (1.1), Cerami, Solimini and Struwe [10] showed that (1.1) has a pair of sign-changing solutions if $N \geq 4$ and $\lambda \in\left(0, \lambda_{1}\right)$, and (1.1) has infinitely many radial solutions if $N \geq 7$ and Ω is a ball. On the other hand, D.Fortunato and E.Jannelli showed in [15] that, for any real positive parameter λ and for all bounded domains Ω, which have suitable symmetry properties, (1.1) has infinitely many solutions when $N \geq 4$, while for $N=3$, the number of solutions increases with λ. Recently, Devillanova and Solimini proved [11] that (1.1) has infinitely many solutions if $N \geq 7$ and $\lambda>0$. In the lower dimensional cases $N=4,5,6$, they also proved [12] that (1.1) has more than one pair of sign-changing solutions, if $\lambda \in\left(0, \lambda_{1}\right)$.

When one of the functions $a(x)$ and $Q(x)$ is not constant, it is difficult to obtain a signchanging solution for (1.1) by using a variational method, because $I(u)$ does not satisfy (PS) ${ }_{c}$ condition for any c larger than the smallest number, where the (PS) condition fails. The aim of this paper is to prove that (1.1) has infinitely many solutions if $N \geq 7, a(x)$ and $Q(x)$ satisfy some degenerate conditions near their critical points.

Since the functional $I(u)$ does not satisfy the (PS) condition, we first look at the following perturbed problem:

$$
\begin{cases}-\operatorname{div}(a(x) D u)=Q(x)|u|^{2^{*}-2-\varepsilon} u+\lambda u & x \in \Omega \tag{1.3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $\varepsilon>0$ is a small constant.
The functional corresponding to (1.3) becomes

$$
\begin{equation*}
I_{\varepsilon}(u)=\frac{1}{2} \int_{\Omega}\left(a(x)|D u|^{2}-\lambda u^{2}\right) \mathrm{d} x-\frac{1}{2^{*}-\varepsilon} \int_{\Omega} Q(x)|u|^{2^{*}-\varepsilon} \mathrm{d} x, \quad u \in H_{0}^{1}(\Omega) \tag{1.4}
\end{equation*}
$$

Now $I_{\varepsilon}(u)$ is an even functional and satisfies the (PS) condition. So from [1, 19] (1.3) has infinitely many solutions. More precisely, there are positive numbers $c_{\varepsilon, l}, l=1,2 \cdots$, with $c_{\varepsilon, l} \rightarrow+\infty$ as $l \rightarrow+\infty$, and a solution $u_{\varepsilon, l}$ for (1.3), satisfying

$$
I_{\varepsilon}\left(u_{\varepsilon, l}\right)=c_{\varepsilon, l} .
$$

Moreover, $c_{\varepsilon, l} \rightarrow c_{l}<+\infty$ as $\varepsilon \rightarrow 0$.
Now we want to study the behavior of $u_{\varepsilon, l}$ as $\varepsilon \rightarrow 0$ for each fixed l. If we can prove that under suitable assumptions on a and $Q, u_{\varepsilon, l}$ converges strongly in $H_{0}^{1}(\Omega)$ to u_{l} as $\varepsilon \rightarrow 0$, then u_{l} is a solution of (1.1) with $I\left(u_{l}\right)=c_{l}$. This will imply that (1.1) has infinitely many solutions. Before we can give the precise conditions for a and Q, we need to introduce some notation.

Define

$$
\begin{equation*}
\Sigma(x)=\frac{a^{N / 2}(x)}{Q^{(N-2) / 2}(x)} \tag{1.5}
\end{equation*}
$$

Let S be the set of all the critical points of $\Sigma(x)$. Let $\langle x, y\rangle$ denote the inner product of $x, y \in \mathbb{R}^{N}$.

https://daneshyari.com/en/article/4664749

Download Persian Version:
https://daneshyari.com/article/4664749

Daneshyari.com

[^0]: ＊Received August 24，2010．D．Cao was supported by Key Project（10631030）of NSFC and Knowledge Innovation Funds of CAS in China．S．Yan was partially supported by ARC in Australia．

