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Abstract We study the following elliptic problem:

⎧⎨
⎩
−div(a(x)Du) = Q(x)|u|2

∗
−2u + λu x ∈ Ω,

u = 0 on ∂Ω.

Under certain assumptions on a and Q, we obtain existence of infinitely many solutions by

variational method.
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1 Introduction

Let N ≥ 3, 2∗ = 2N
N−2 , and Ω be an open bounded domain in R

N . We consider the following

elliptic problem: ⎧⎨
⎩
−div(a(x)Du) = Q(x)|u|2

∗

−2u+ λu x ∈ Ω,

u = 0 on ∂Ω,
(1.1)

where a, Q ∈ C4(Ω̄), a(x) ≥ a0 > 0, Q(x) ≥ Q0 > 0, and λ > 0 is a positive constant.

The functional corresponding to (1.1) is

I(u) =
1

2

∫
Ω

(
a(x)|Du|2 − λu2

)
dx−

1

2∗

∫
Ω

Q(x)|u|2
∗

dx, u ∈ H1
0 (Ω). (1.2)

Since the embedding of H1
0 (Ω) into L2∗(Ω) is not compact, the functional I(u) does not

satisfies the Palais-Smale condition ((PS) condition for short). This loss of compactness creates

a lot of difficulties when variational method is used to obtain the existence result for (1.1).
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Let us first recall some well known results for problem (1.1) when a(x) ≡ 1 and Q(x) ≡ 1.

By using the Pohozaev identity [17], problem (1.1) has no nontrivial solution if λ ≤ 0 and Ω is

star-shaped. On the other hand, Brezis and Nirenberg [6] proved that if N ≥ 4 and λ ∈ (0, λ1),

where λ1 is the first eigenvalue of −Δ in H1
0 (Ω), (1.1) has a positive solution, while it was

proved by Capozzi, Fortunato and Palmieri [9], Ambrosetti and Struwe [2] that (1.1) has a

nontrivial solution if N ≥ 4 and λ > 0. Concerning the multiplicity results for (1.1), Cerami,

Solimini and Struwe [10] showed that (1.1) has a pair of sign-changing solutions if N ≥ 4 and

λ ∈ (0, λ1), and (1.1) has infinitely many radial solutions if N ≥ 7 and Ω is a ball. On the other

hand, D.Fortunato and E.Jannelli showed in [15] that, for any real positive parameter λ and

for all bounded domains Ω, which have suitable symmetry properties, (1.1) has infinitely many

solutions when N ≥ 4, while for N = 3, the number of solutions increases with λ. Recently,

Devillanova and Solimini proved [11] that (1.1) has infinitely many solutions if N ≥ 7 and

λ > 0. In the lower dimensional cases N = 4, 5, 6, they also proved [12] that (1.1) has more

than one pair of sign-changing solutions, if λ ∈ (0, λ1).

When one of the functions a(x) and Q(x) is not constant, it is difficult to obtain a sign-

changing solution for (1.1) by using a variational method, because I(u) does not satisfy (PS)c

condition for any c larger than the smallest number, where the (PS) condition fails. The aim

of this paper is to prove that (1.1) has infinitely many solutions if N ≥ 7, a(x) and Q(x) satisfy

some degenerate conditions near their critical points.

Since the functional I(u) does not satisfy the (PS) condition, we first look at the following

perturbed problem: ⎧⎨
⎩
−div(a(x)Du) = Q(x)|u|2

∗

−2−εu+ λu x ∈ Ω,

u = 0 on ∂Ω,
(1.3)

where ε > 0 is a small constant.

The functional corresponding to (1.3) becomes

Iε(u) =
1

2

∫
Ω

(
a(x)|Du|2 − λu2

)
dx−

1

2∗ − ε

∫
Ω

Q(x)|u|2
∗

−εdx, u ∈ H1
0 (Ω). (1.4)

Now Iε(u) is an even functional and satisfies the (PS) condition. So from [1, 19] (1.3) has

infinitely many solutions. More precisely, there are positive numbers cε, l, l = 1, 2 · · · , with

cε, l → +∞ as l → +∞, and a solution uε, l for (1.3), satisfying

Iε(uε, l) = cε, l.

Moreover, cε, l → cl < +∞ as ε→ 0.

Now we want to study the behavior of uε, l as ε→ 0 for each fixed l. If we can prove that

under suitable assumptions on a and Q, uε, l converges strongly in H1
0 (Ω) to ul as ε→ 0, then

ul is a solution of (1.1) with I(ul) = cl. This will imply that (1.1) has infinitely many solutions.

Before we can give the precise conditions for a and Q, we need to introduce some notation.

Define

Σ(x) =
aN/2(x)

Q(N−2)/2(x)
. (1.5)

Let S be the set of all the critical points of Σ(x). Let 〈x, y〉 denote the inner product of

x, y ∈ R
N .
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