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Answering problems of Manin, we use the critical L-values 
of even weight k ≥ 4 newforms f ∈ Sk(Γ0(N)) to define 
zeta-polynomials Zf (s) which satisfy the functional equation 
Zf (s) = ±Zf (1 − s), and which obey the Riemann Hypothe-
sis: if Zf (ρ) = 0, then Re(ρ) = 1/2. The zeros of the Zf (s) on 
the critical line in t-aspect are distributed in a manner which 
is somewhat analogous to those of classical zeta-functions. 
These polynomials are assembled using (signed) Stirling num-
bers and “weighted moments” of critical L-values. In analogy 
with Ehrhart polynomials which keep track of integer points in 
polytopes, the Zf (s) encode arithmetic information. Assum-
ing the Bloch–Kato Tamagawa Number Conjecture, they en-
code the arithmetic of a combinatorial arithmetic–geometric 
object which we call the “Bloch–Kato complex” for f . Loosely 
speaking, these are graded sums of weighted moments of 
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orders of Šafarevič–Tate groups associated to the Tate twists 
of the modular motives.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

Let f ∈ Sk(Γ0(N)) be a newform of even weight k and level N . Associated to f is its 
L-function L(f, s), which may be normalized so that the completed L-function

Λ(f, s) :=
(√N

2π

)s

Γ(s)L(f, s),

satisfies the functional equation Λ(f, s) = ε(f)Λ(f, k − s), with ε(f) = ±1. The critical 
L-values are the complex numbers L(f, 1), L(f, 2), . . . , L(f, k − 1).

In a recent paper [14], Manin speculated on the existence of natural zeta-polynomials
which can be canonically assembled from these critical values. A polynomial Z(s) is a 
zeta-polynomial if it is arithmetic–geometric in origin, satisfies a functional equation of 
the form

Z(s) = ±Z(1 − s)

and obeys the Riemann Hypothesis: if Z(ρ) = 0, then Re(ρ) = 1/2.
Here we confirm his speculation. To this end, we define the m-th weighted moments

of critical values

Mf (m) :=
k−2∑
j=0

(√
N

2π

)j+1
L(f, j + 1)
(k − 2 − j)!j

m = 1
(k − 2)!

k−2∑
j=0

(
k − 2
j

)
Λ(f, j + 1)jm. (1.1)

For positive integers n, we recall the usual generating function for the (signed) Stirling 
numbers of the first kind

(x)n = x(x− 1)(x− 2) · · · (x− n + 1) =:
n∑

m=0
s(n,m)xm. (1.2)

Using these numbers we define the zeta-polynomial for these weighted moments by

Zf (s) := ε(f) ·
k−2∑
h=0

(−s)h
k−2−h∑
m=0

(
m + h

h

)
· s(k − 2,m + h) ·Mf (m). (1.3)

To be a zeta-polynomial in the sense of Manin [14], we must show that Zf(s) satis-
fies a functional equation and the Riemann Hypothesis. Our first result confirms these 
properties.
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