

Advances in Mathematics 300 (2016) 190-228

Cluster structures on strata of flag varieties

B. Leclerc^{a,b,c,d,*}

^a Normandie Univ., France

^b UNICAEN, LMNO, F-14032 Caen, France

^c CNRS UMR 6139, F-14032 Caen, France

^d Institut Universitaire de France, France

A R T I C L E I N F O

Article history: Received 25 February 2014 Accepted 31 December 2014 Available online 31 March 2016

In memory of Andrei Zelevinsky, whose work has been a constant source of inspiration.

Keywords: Cluster algebra Flag variety Richardson variety Preprojective algebra

ABSTRACT

We introduce some new Frobenius subcategories of the module category of a preprojective algebra of Dynkin type, and we show that they have a cluster structure in the sense of Buan–Iyama–Reiten–Scott. These categorical cluster structures yield cluster algebra structures in the coordinate rings of intersections of opposite Schubert cells.

 \odot 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Let G be a simple and simply connected algebraic group over \mathbb{C} . We assume that G is simply-laced, that is, G is of type A, D, E in the Cartan–Killing classification. We fix a maximal torus H in G, a Borel subgroup B containing H, and we denote by B^- the Borel subgroup opposite to B with respect to H. Let $W = \operatorname{Norm}_G(H)/H$ be the Weyl group, with length function $w \mapsto \ell(w)$ and longest element w_0 .

* Correspondence to: UNICAEN, LMNO, F-14032 Caen, France. *E-mail address:* bernard.leclerc@unicaen.fr.

 $\label{eq:http://dx.doi.org/10.1016/j.aim.2016.03.018} 0001-8708 / © 2016 Elsevier Inc. All rights reserved.$

We consider the flag variety $X = B^{-}\backslash G$, and we denote by $\pi : G \to X$ the natural projection $\pi(g) := B^{-}g$. The Bruhat decomposition

$$G = \bigsqcup_{w \in W} B^- w B$$

projects to the Schubert decomposition

$$X = \bigsqcup_{w \in W} C_w,\tag{1}$$

where $C_w = \pi(B^-wB^-)$ is the *Schubert cell* attached to w, isomorphic to $\mathbb{C}^{\ell(w)}$. We may also consider the Birkhoff decomposition

$$G = \bigsqcup_{w \in W} B^- w B,$$

which projects to the opposite Schubert decomposition

$$X = \bigsqcup_{w \in W} C^w, \tag{2}$$

where $C^w = \pi(B^-wB)$ is the opposite Schubert cell attached to w, isomorphic to $\mathbb{C}^{\ell(w_0)-\ell(w)}$. The intersection

$$\mathcal{R}_{v,w} := C^v \cap C_w \tag{3}$$

has been considered by Kazhdan and Lusztig [34] in relation with the cohomological interpretation of the Kazhdan–Lusztig polynomials. One shows [34,13] that $\mathcal{R}_{v,w}$ is nonempty if and only if $v \leq w$ in the Bruhat order of W, and it is a smooth irreducible locally closed subset of C_w of dimension $\ell(w) - \ell(v)$. More recently, $\mathcal{R}_{v,w}$ has sometimes been called an open Richardson variety [36], because its closure in X is known as a Richardson variety [44].

Intersecting the decompositions (1) and (2) of X, we thus get a finer stratification

$$X = \bigsqcup_{v \le w} \mathcal{R}_{v,w}.$$
 (4)

However, in contrast with (1) or (2), the strata $\mathcal{R}_{v,w}$ of (4) are not isomorphic to affine spaces.

1.2. Let I be the vertex set of the Dynkin diagram of G. We denote by $x_i(t)$ $(i \in I, t \in \mathbb{C})$ $(resp. y_i(t) \ (i \in I, t \in \mathbb{C}))$ the one-parameter subgroups of B $(resp. B^-)$ attached to the simple roots. For $K \subset I$, let B_K^- be the standard parabolic subgroup of G generated by B^- and the $x_i(t)$ with $i \in K$. We denote by $X_K = B_K^- \setminus G$ the corresponding partial flag variety. Let $\pi_K : G \to X_K$ and $\pi^K : X \to X_K$ be the natural projections, so that we have $\pi_K = \pi^K \circ \pi$. Let W_K be the parabolic subgroup of W corresponding to K with longest element w_K , and let W^K be the subset of W_K consisting of the minimal

Download English Version:

https://daneshyari.com/en/article/4665077

Download Persian Version:

https://daneshyari.com/article/4665077

Daneshyari.com