

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Maximal chains of isomorphic subgraphs of countable ultrahomogeneous graphs

MATHEMATICS

霐

Miloš S. Kurilić^{a,*}, Boriša Kuzeljević^b

 ^a Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
^b Mathematical Institute of the Serbian Academy of Sciences and Arts, Kneza Mihaila 36, 11001 Belgrade, Serbia

ARTICLE INFO

Article history: Received 8 October 2013 Accepted 11 July 2014 Available online 5 August 2014 Communicated by H. Jerome Keisler

 $\begin{array}{c} MSC: \\ 05C63 \\ 05C80 \\ 05C60 \\ 06A05 \\ 06A06 \\ 03C50 \\ 03C15 \end{array}$

Keywords: Ultrahomogeneous graph Henson graphs Rado graph Isomorphic subgraph Maximal chain Compact set

ABSTRACT

For a countable ultrahomogeneous graph $\mathbb{G} = \langle G, \rho \rangle$ let $\mathbb{P}(\mathbb{G})$ denote the collection of sets $A \subset G$ such that $\langle A, \rho \cap [A]^2 \rangle \cong \mathbb{G}$. The order types of maximal chains in the poset $\langle \mathbb{P}(\mathbb{G}) \cup \{\emptyset\}, \subset \rangle$ are characterized as:

(I) the order types of compact sets of reals having the minimum non-isolated, if \mathbb{G} is the Rado graph or the Henson graph \mathbb{H}_n , for some $n \geq 3$;

(II) the order types of compact nowhere dense sets of reals having the minimum non-isolated, if \mathbb{G} is the union of μ disjoint complete graphs of size ν , where $\mu\nu = \omega$.

© 2014 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: milos@dmi.uns.ac.rs (M.S. Kurilić), borisa@mi.sanu.ac.rs (B. Kuzeljević).

 $\label{eq:http://dx.doi.org/10.1016/j.aim.2014.07.011} 0001-8708 \ensuremath{\oslash} \ensuremath{\bigcirc} \ensuremath{\ensuremath{\bigcirc} \ensuremath{\otimes} \ensuremath{\bigcirc} \ensuremath{\otimes} \e$

1. Introduction

If X is a relational structure, $\mathbb{P}(X)$ will denote the set of domains of substructures of X which are isomorphic to X. X is called *ultrahomogeneous* iff each isomorphism between two finite substructures of X can be extended to an automorphism of X.

A structure $\mathbb{G} = \langle G, \rho \rangle$ is a graph iff G is a set and ρ a symmetric irreflexive binary relation on G. We will also use the following equivalent definition: a pair $\mathbb{G} = \langle G, \rho \rangle$ is a graph iff G is a set and $\rho \subset [G]^2$. Then for $H \subset G$, $\langle H, \rho \cap [H]^2 \rangle$ (or $\langle H, \rho \cap (H \times H) \rangle$), in the relational version) is the corresponding subgraph of \mathbb{G} . For a cardinal ν , \mathbb{K}_{ν} will denote the complete graph of size ν . A graph is called \mathbb{K}_n -free iff it has no subgraphs isomorphic to \mathbb{K}_n . We will use the following well-known classification of countable ultrahomogeneous graphs [9]:

Theorem 1.1 (Lachlan and Woodrow). Each countable ultrahomogeneous graph is isomorphic to one of the following graphs

- $\mathbb{G}_{\mu\nu}$, the union of μ disjoint copies of \mathbb{K}_{ν} , where $\mu\nu = \omega$,
- \mathbb{G}_{Rado} , the unique countable homogeneous universal graph, the Rado graph,
- \mathbb{H}_n , the unique countable homogeneous universal \mathbb{K}_n -free graph, for $n \geq 3$,
- the complements of these graphs.

Properties of maximal chains in posets are widely studied order invariants (see [1, 3,4,10,11]) and, as a part of investigation of the partial orders of the form $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$, where \mathbb{X} is a relational structure, the class of order types of maximal chains in the poset $\langle \mathbb{P}(\mathbb{G}_{\text{Rado}}), \subset \rangle$ was characterized in [7]. The aim of this paper is to complete the picture for all countable ultrahomogeneous graphs in this context and, thus, the following theorem is our main result.

Theorem 1.2. Let \mathbb{G} be a countable ultrahomogeneous graph. Then:

- (I) If $\mathbb{G} = \mathbb{G}_{\text{Rado}}$ or $\mathbb{G} = \mathbb{H}_n$, for some $n \ge 3$, then for each linear order L the following conditions are equivalent:
 - (a) L is isomorphic to a maximal chain in the poset $\langle \mathbb{P}(\mathbb{G}) \cup \{\emptyset\}, \subset \rangle$;
 - (b) L is an \mathbb{R} -embeddable complete linear order with 0_L non-isolated;
 - (c) L is isomorphic to a compact set $K \subset \mathbb{R}$ having the minimum non-isolated.
- (II) If $\mathbb{G} = \mathbb{G}_{\mu\nu}$, where $\mu\nu = \omega$, then for each linear order L the following conditions are equivalent:
 - (a) L is isomorphic to a maximal chain in the poset $\langle \mathbb{P}(\mathbb{G}) \cup \{\emptyset\}, \subset \rangle$;
 - (b) L is an \mathbb{R} -embeddable Boolean linear order with 0_L non-isolated;
 - (c) L is isomorphic to a compact nowhere dense set $K \subset \mathbb{R}$ having the minimum non-isolated.

Download English Version:

https://daneshyari.com/en/article/4665655

Download Persian Version:

https://daneshyari.com/article/4665655

Daneshyari.com