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For a countable ultrahomogeneous graph G = 〈G, ρ〉 let P(G)
denote the collection of sets A ⊂ G such that 〈A, ρ ∩[A]2〉 ∼= G. 
The order types of maximal chains in the poset 〈P(G) ∪{∅}, ⊂〉
are characterized as:
(I) the order types of compact sets of reals having the 
minimum non-isolated, if G is the Rado graph or the Henson 
graph Hn, for some n ≥ 3;
(II) the order types of compact nowhere dense sets of reals 
having the minimum non-isolated, if G is the union of μ
disjoint complete graphs of size ν, where μν = ω.
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1. Introduction

If X is a relational structure, P(X) will denote the set of domains of substructures of 
X which are isomorphic to X. X is called ultrahomogeneous iff each isomorphism between 
two finite substructures of X can be extended to an automorphism of X.

A structure G = 〈G, ρ〉 is a graph iff G is a set and ρ a symmetric irreflexive binary 
relation on G. We will also use the following equivalent definition: a pair G = 〈G, ρ〉 is a 
graph iff G is a set and ρ ⊂ [G]2. Then for H ⊂ G, 〈H, ρ ∩[H]2〉 (or 〈H, ρ ∩(H×H)〉, in the 
relational version) is the corresponding subgraph of G. For a cardinal ν, Kν will denote 
the complete graph of size ν. A graph is called Kn-free iff it has no subgraphs isomorphic 
to Kn. We will use the following well-known classification of countable ultrahomogeneous 
graphs [9]:

Theorem 1.1 (Lachlan and Woodrow). Each countable ultrahomogeneous graph is iso-
morphic to one of the following graphs

– Gμν , the union of μ disjoint copies of Kν , where μν = ω,
– GRado, the unique countable homogeneous universal graph, the Rado graph,
– Hn, the unique countable homogeneous universal Kn-free graph, for n ≥ 3,
– the complements of these graphs.

Properties of maximal chains in posets are widely studied order invariants (see [1,
3,4,10,11]) and, as a part of investigation of the partial orders of the form 〈P(X), ⊂〉, 
where X is a relational structure, the class of order types of maximal chains in the 
poset 〈P(GRado), ⊂〉 was characterized in [7]. The aim of this paper is to complete the 
picture for all countable ultrahomogeneous graphs in this context and, thus, the following 
theorem is our main result.

Theorem 1.2. Let G be a countable ultrahomogeneous graph. Then:

(I) If G = GRado or G = Hn, for some n ≥ 3, then for each linear order L the following 
conditions are equivalent:
(a) L is isomorphic to a maximal chain in the poset 〈P(G) ∪ {∅}, ⊂〉;
(b) L is an R-embeddable complete linear order with 0L non-isolated;
(c) L is isomorphic to a compact set K ⊂ R having the minimum non-isolated.

(II) If G = Gμν , where μν = ω, then for each linear order L the following conditions 
are equivalent:
(a) L is isomorphic to a maximal chain in the poset 〈P(G) ∪ {∅}, ⊂〉;
(b) L is an R-embeddable Boolean linear order with 0L non-isolated;
(c) L is isomorphic to a compact nowhere dense set K ⊂ R having the minimum 

non-isolated.
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