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Redheffer type inequalities for modified Bessel functions
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Abstract. In this short note, we give new proofs of Redheffer’s inequality for modified
Bessel functions of first kind published by Ling Zhu (2011). In addition, using the Grosswald
formula we prove new Redheffer type inequality for the modified Bessel functions of the
second kind.
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1. INTRODUCTION

This following inequality

sin x

x
≥ π2 − x2

π2 + x2
, for all x ∈ R (1)

is known in literature as Redheffer’s inequality [5]. J. P. Williams [7] proved the inequality
(1). Chen et al. [2] obtained the following three Redheffer type inequalities for the functions
cos x, sinh x

x and cosh x

cos x ≥ π2 − 4x2

π2 + 4x2
, x ∈ [0,

π

2
]. (2)

cosh x ≤ π2 + 4x2

π2 − 4x2
, x ∈ [0,

π

2
[. (3)

sinh x

x
≥ π2 + x2

π2 − x2
, x ∈ [0, π]. (4)
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Recently, some extensions of inequalities (3) and (4) involving modified Bessel function have
been shown in Baricz [1]. Define the function Ip : R −→ [1, +∞[ by

Ip(x) = 2pΓ (p + 1)
Ip(x)
xp

=

n≥0


1
4

n

(p + 1)nn!
x2n

where (p+1)n = (p+1)(p+2) · · · (p+n) = Γ(p+n+1)
Γ(p+1) is the well-known Pochhammer (or

Appel) symbol defined in terms of Euler’s gamma function, and Ip(x) is the modified Bessel
function. Recall that in 2007 Baricz [1] proved that for all p > −1, the following inequality

Ip(x) ≤
j2
p,1 + x2

j2
p,1 − x2

, x ∈]0, jp,1[

where jp,n is the nth positive zero of the Bessel function Jp(x).
In 2008, L. Zhu and J. Sun [9] extended and sharpened inequalities (3) and (4) as follows.

Theorem 1. Let 0 < x < r. Then
r2 + x2

r2 − x2

α

≤ sinh x

x
≤


r2 + x2

r2 − x2

β

(5)

holds if and only if α ≤ 0 and β ≥ r2

12 .

Theorem 2. Let 0 ≤ x < r. Then
r2 + x2

r2 − x2

α

≤ cosh x ≤


r2 + x2

r2 − x2

β

(6)

holds if and only if α ≤ 0 and β ≥ r2

4 .

Next, let us recall the following result which will be used in the sequel.

Lemma 1. Let f, g : [a, b] −→ R two continuous functions which are differentiable on (a, b).
Further, let g′ ≠ 0 on (a, b). If f ′

g′ is increasing (or decreasing) on (a, b), then the functions
f(x)−f(a)
g(x)−g(a) and f(x)−f(b)

g(x)−g(b) are also increasing (or decreasing) on (a, b).

Proof. Denoting by φ(x) = f(x)−f(a)
g(x)−g(a) , a simple calculation reveals that the numerator of φ′

equals
f ′(x)
g′(x)

− f(x) − f(a)
g(x) − g(a)


g′(x)(g(x) − g(a))

from which the stated result follows upon applying Cauchy’s mean value theorem and the
monotonicity hypotheses in the lemma. �
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