

Available online at www.sciencedirect.com

Indagationes Mathematicae 27 (2016) 850-854

indagationes mathematicae

www.elsevier.com/locate/indag

Maps preserving the fixed points of triple Jordan products of operators

Ali Taghavi, Roja Hosseinzadeh, Vahid Darvish*

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P.O. Box 47416-1468, Babolsar, Iran

Received 15 July 2015; received in revised form 7 March 2016; accepted 14 March 2016

Communicated by H. Woerdeman

Abstract

Let $\mathcal{B}(\mathcal{X})$ be the algebra of all bounded linear operators on a complex Banach space \mathcal{X} with dim $\mathcal{X} \ge 3$. In this paper, we characterize the forms of surjective maps on $\mathcal{B}(\mathcal{X})$ which preserve the fixed points of triple Jordan products of operators.

© 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Preserver problem; Fixed point; Triple Jordan product

1. Introduction

The study of maps on operator algebras preserving certain properties is a topic which attracts much attention of many authors. Some of these problems are concerned with preserving a certain property of sum or product of operators (see [1-8]).

Let $\mathcal{B}(\mathcal{X})$ denote the algebra of all bounded linear operators on a complex Banach space \mathcal{X} . For $A \in \mathcal{B}(\mathcal{X})$, denote by LatA the lattice of A, that is, the set of all invariant subspaces of A. The authors in [1] characterize the forms of maps $\phi : \mathcal{B}(\mathcal{X}) \to \mathcal{B}(\mathcal{X})$ which satisfy one of the following preserving properties:

http://dx.doi.org/10.1016/j.indag.2016.03.003

^{*} Corresponding author.

E-mail addresses: taghavi@umz.ac.ir (A. Taghavi), ro.hosseinzadeh@umz.ac.ir (R. Hosseinzadeh), vahid.darvish@mail.com (V. Darvish).

^{0019-3577/© 2016} Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

- $\operatorname{Lat}(A + B) = \operatorname{Lat}(\phi(A) + \phi(B)),$
- $\operatorname{Lat}(AB) = \operatorname{Lat}(\phi(A)\phi(B)),$
- Lat(AB + BA) = Lat $(\phi(A)\phi(B) + \phi(B)\phi(A))$,
- $\operatorname{Lat}(ABA) = \operatorname{Lat}(\phi(A)\phi(B)\phi(A)),$
- Lat(AB BA) = Lat $(\phi(A)\phi(B) \phi(B)\phi(A))$.

Recall that $x \in \mathcal{X}$ is a fixed point of an operator $A \in \mathcal{B}(\mathcal{X})$ whenever we have Ax = x. Denote by F(A), the set of all fixed points of A. It is clear that $F(A) \in \text{Lat}A$. We denote by dim F(T), the dimension of F(T). Let dim $\mathcal{X} \ge 3$. In [7], we characterized the forms of surjective maps $\phi : \mathcal{B}(\mathcal{X}) \to \mathcal{B}(\mathcal{X})$ such that dim $F(AB) = \dim F(\phi(A)\phi(B))$, for every $A, B \in \mathcal{B}(\mathcal{X})$.

The main result of this paper is as follows.

Theorem 1.1. Let \mathcal{X} be a complex Banach space with dim $\mathcal{X} \geq 3$. Suppose that $\phi : \mathcal{B}(\mathcal{X}) \longrightarrow \mathcal{B}(\mathcal{X})$ is a surjective map such that satisfies the following condition:

 $F(ABA) = F(\phi(A)\phi(B)\phi(A)) \quad (A, B \in \mathcal{B}(\mathcal{X})).$

Then $\phi(A) = \alpha A$ for every $A \in \mathcal{B}(\mathcal{X})$, where α is a complex number α with $\alpha^3 = 1$.

We recall some notations. \mathcal{X}^* denotes the dual space of \mathcal{X} . For every nonzero $x \in \mathcal{X}$ and $f \in \mathcal{X}^*$, the symbol $x \otimes f$ stands for the rank one linear operator on \mathcal{X} defined by $(x \otimes f)y = f(y)x$ for any $y \in \mathcal{X}$. Note that every rank one operator in $\mathcal{B}(\mathcal{X})$ can be written in this way. The rank one operator $x \otimes f$ is idempotent if and only if f(x) = 1 and is nilpotent if and only if f(x) = 0. We denote by $\mathcal{P}(\mathcal{X})$, $\mathcal{F}_1(\mathcal{X})$, $\mathcal{P}_1(\mathcal{X})$ and $\mathcal{N}_1(\mathcal{X})$ the set of all idempotent operators, the set of all rank one operators in $\mathcal{B}(\mathcal{X})$, respectively.

Let $x \otimes f$ be a rank one operator. It is easy to check that $x \otimes f$ is an idempotent if and only if $F(x \otimes f) = \langle x \rangle$ (the linear subspace spanned by x). If $x \otimes f$ is not idempotent, then $F(x \otimes f) = \{0\}$.

2. Maps preserving the fixed points of triple Jordan product of operators

In order to prove the main result, first we prove some auxiliary lemmas. Denote $\mathbb{C}^* = \mathbb{C} \setminus \{0, 1\}$.

Lemma 2.1. Let $A \in \mathcal{B}(\mathcal{X})$, then $A \in \mathbb{C}^*I$ if and only if $F(PAP) = \{0\}$, for every $P \in \mathcal{P}_1(\mathcal{X})$.

Proof. The sufficiently part is clear. If $A \notin \mathbb{C}^*I$, then there is a nonzero $x \in \mathcal{X}$ such that x = Ax or x and Ax are linearly independent. Let x and Ax be linearly independent, then we can find a linear functional f such that f(x) = f(Ax) = 1. By setting $P = x \otimes f$, we have $F(PAP) = \langle x \rangle$ which is a contradiction. It is known that if x and Ax are linearly dependent for every $x \in \mathcal{X}$, then A is a multiple of identity.

Lemma 2.2. Let A and B be non-scalar operators. If F(PAP) = F(PBP), for every $P \in \mathcal{P}_1(\mathcal{X})$, then there exists $a \lambda \in \mathbb{C} \setminus \{1\}$ such that $B = \lambda I + (1 - \lambda)A$.

Proof. By Proposition 3.3 in [8], it is sufficient to show that $PAP \in \mathcal{P}(\mathcal{X}) \setminus \{0\}$ implies that $PBP \in \mathcal{P}(\mathcal{X}) \setminus \{0\}$ for every $P \in \mathcal{P}_1(\mathcal{X})$.

Now, let $P \in \mathcal{P}_1(\mathcal{X})$. If $PAP \in \mathcal{P}(\mathcal{X}) \setminus \{0\}$, then F(PAP) = Im P and by assumption F(PBP) = Im P. Since PBP is a rank one operator, we have $PBP \in \mathcal{P}(\mathcal{X}) \setminus \{0\}$.

Download English Version:

https://daneshyari.com/en/article/4672756

Download Persian Version:

https://daneshyari.com/article/4672756

Daneshyari.com