

Available online at www.sciencedirect.com

Indagationes Mathematicae 27 (2016) 94-99

indagationes mathematicae

www.elsevier.com/locate/indag

A note on weighted homogeneous Siciak–Zaharyuta extremal functions

Barbara Drinovec Drnovšek^{a,b,*}, Ragnar Sigurdsson^c

^a Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia ^b Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia ^c Department of Mathematics, School of Engineering and Natural Sciences, University of Iceland, IS-107 Reykjavík, Iceland

Received 4 June 2015; received in revised form 10 July 2015; accepted 3 August 2015

Communicated by J.J.O.O. Wiegerinck

Abstract

We prove that for any given upper semicontinuous function φ on a subset E of $\mathbb{C}^n \setminus \{0\}$, such that the complex cone generated by E minus the origin is open and connected, the homogeneous Siciak–Zaharyuta function with the weight φ on E can be represented as an envelope of a disc functional. (© 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

Keywords: Siciak's homogeneous extremal function; Disc functional; Envelope of a disc functional

1. Introduction

Let \mathcal{L} denote the Lelong class on \mathbb{C}^n and \mathcal{L}^h the subclass of functions u which are *logarithmically homogeneous*. Let $\varphi: E \to \mathbb{R}$ be a function on a subset E of \mathbb{C}^n taking values in the extended real line \mathbb{R} . The *Siciak–Zaharyuta extremal function* $V_{E,\varphi}$ with weight φ is defined by

 $V_{E,\varphi} = \sup\{u \in \mathcal{L}; \ u | E \le \varphi\}.$

http://dx.doi.org/10.1016/j.indag.2015.08.001

0019-3577/© 2015 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia.

E-mail addresses: barbara.drinovec@fmf.uni-lj.si (B. Drinovec Drnovšek), ragnar@hi.is (R. Sigurdsson).

The homogeneous Siciak–Zaharyuta extremal function $V_{E,\varphi}^h$ with weight φ is defined similarly with \mathcal{L}^h in the role of \mathcal{L} . In the special case when $\varphi = 0$ we only write V_E (and V_E^h) and we call this function the (homogeneous) Siciak–Zaharyuta extremal function for the set E. The function V_E (V_E^h) is also called the (homogeneous) pluricomplex Green function for E with pole at infinity. Let $\mathbb{C}E = \{\lambda z; \lambda \in \mathbb{C}, z \in E\}$ and $\mathbb{C}^*E = \{\lambda z; \lambda \in \mathbb{C}^*, z \in E\}$.

Theorem 1. Let $\varphi: E \to \mathbb{R} \cup \{-\infty\}$ be an upper semicontinuous function on a subset E of $\mathbb{C}^n \setminus \{0\}$ such that \mathbb{C}^*E is nonpluripolar. Assume that there exists a function in \mathcal{L}^h dominated by φ on E. Then the largest logarithmically homogeneous function $\mathbb{C}E \to \mathbb{R} \cup \{-\infty\}$ dominated by φ on E is upper semicontinuous on \mathbb{C}^*E and it is of the form $\log \varrho_{E,\varphi}$, where

$$\varrho_{E,\varphi}(z) = \inf\{|\lambda|e^{\varphi(z/\lambda)}; \ \lambda \in \mathbb{C}^*, z/\lambda \in E\}, \quad z \in \mathbb{C}^*E.$$
(1)

If $\mathbb{C}^* E$ is open and connected, then for every $z \in \mathbb{C}^n$

$$V_{E,\varphi}^{h}(z) = \inf \left\{ \int_{\mathbb{T}} \log \varrho_{E,\varphi}(f_1, \dots, f_n) \, d\sigma; \ f \in \mathcal{O}(\overline{\mathbb{D}}, \mathbb{P}^n), \ f = [f_0 : \dots : f_n], \\ f(\mathbb{T}) \subset \mathbb{C}^* E, \ f_0(0) = 1, \ (f_1(0), \dots, f_n(0)) = z \right\}.$$

$$(2)$$

If $\mathbb{C}E = \mathbb{C}^n$, then for every $z \in \mathbb{C}^n$

$$V_{E,\varphi}^{h}(z) = \inf\left\{\int_{\mathbb{T}} \log \varrho_{E,\varphi} \circ f \, d\sigma; \ f \in \mathcal{O}(\overline{\mathbb{D}}, \mathbb{C}^{n}), \ f(0) = z\right\}.$$
(3)

A closed analytic disc in a complex space X is a holomorphic map $f:\overline{\mathbb{D}} \to X$ from some neighbourhood of the unit disc \mathbb{D} in \mathbb{C} into X. The point $z = f(0) \in X$ is called the *center* of f. We denote the set of all closed analytic discs in X by $\mathcal{O}(\overline{\mathbb{D}}, X)$. For a subset \mathcal{B} of $\mathcal{O}(\overline{\mathbb{D}}, X)$, let $\mathcal{B}(z)$ consist of all $f \in \mathcal{B}$ with center z. A *disc functional* H on X is a map defined on some subset \mathcal{A} of $\mathcal{O}(\overline{\mathbb{D}}, X)$ with values in the extended real line \mathbb{R} . The *envelope* $E_{\mathcal{B}}H: X \to \mathbb{R}$ of H with respect to the subset \mathcal{B} of \mathcal{A} is defined by $E_{\mathcal{B}}H(z) = \inf\{H(f); f \in \mathcal{B}(z)\}$ for $z \in X$.

The formula (2) is an example of a disc envelope formula, where \mathcal{A} consists of all closed analytic discs with values in the projective space, i.e., elements f in $\mathcal{O}(\overline{\mathbb{D}}, \mathbb{P}^n)$, which map the unit circle \mathbb{T} into \mathbb{C}^*E , H(f) is the integral, and \mathcal{B} is the subset of \mathcal{A} consisting of discs with $f_0(0) = 1$. We identify a point $[1:z] \in \mathbb{P}^n$ with the point $z \in \mathbb{C}^n$.

For general information on the Siciak–Zaharyuta extremal function see Siciak [10–14] and Zaharyuta [15]. The first disc envelope formula for V_E was proved by Lempert in the case when E is an open convex subset of \mathbb{C}^n with real analytic boundary. (The proof is given in Momm [7, Appendix].) Lárusson and Sigurdsson [3] proved disc envelope formulas for V_E for open connected subsets E of \mathbb{C}^n . Magnússon and Sigurdsson [6] generalized this result and obtained a disc formula for $V_{E,\varphi}$ in the case when φ is an upper semicontinuous function on an open connected subsets E of \mathbb{C}^n . Drinovec Drnovšek and Forstnerič [1] proved disc envelope formulas for V_E for open subsets E of an irreducible and locally irreducible algebraic subvariety of \mathbb{C}^n . Magnússon [5] established disc envelope formulas for the global extremal function in the projective space.

Notation. Let \mathbb{D} denote the open unit disc in \mathbb{C} , \mathbb{T} the unit circle, and σ the arc length measure on \mathbb{T} normalized to 1. For a subset X of \mathbb{C}^n we let $\mathcal{USC}(X)$ denote the set of all upper semicontinuous functions on X, and for open subset U of \mathbb{C}^n we denote by $\mathcal{PSH}(U)$ the set of all plurisubharmonic functions on U. Let \log^+ denote the positive part of the log function. Download English Version:

https://daneshyari.com/en/article/4672817

Download Persian Version:

https://daneshyari.com/article/4672817

Daneshyari.com