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a b s t r a c t

We show the presence of fractal ordering of copper grade in bore core data at short range in the Cadia
Ridgeway porphyry deposit and measure its persistence after mining by monitoring the output of the
mine every 20 s for a month using a large scale, zero field magnetic resonance sensor. A simple model is
used to investigate this connection and its consequences for sorting of the ore. Fractal distributions, and
their associated power laws, have two features highly favourable for segregating ore: a large proportion
of low-grade pods and the large scale spatial clustering of grade.

� 2014, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

The amounts of copper available to mine, falling head grades,
and the impact of technology on supply are topics of recent dis-
cussion (Herrington, 2013; Kerr, 2014). Pod ore sorting, where
batches of crushed rock are diverted based on copper grade, is one
potentially high impact technology to address dropping head
grades in copper deposits. To date, sorting of crushed ore has
generally taken place at low rates on a rock-by-rock basis (Salter
and Wyatt, 1991). For pod sorting to be effective a sensor must
exist that is capable of rapidly measuring the grade of a bulk stream
of copper ore, and there must be sufficient variation of grade at
relevant size scales in the production stream. The presence of
fractal behaviour in the distribution of copper in the deposit, as has
been suggested in past studies of the mechanisms of grade con-
centration (Monecke et al., 2005), would have a profound effect on
the scaling behaviour of variation with pod size and the relative
amount of pods that have low levels of copper.

Fractal methods have been used successfully in analysing bore
core data from copper porphyry deposits showing a power law or
near power law distribution of copper grade (Monecke et al., 2005)

and vein sizes (Monecke et al., 2001; Sylvie et al., 2007). They have
been used to analyse grade tonnage curves (Wang et al., 2010;
McGraw, 2013) and classify regions within a deposit (Afzal et al.,
2011, 2013). The analysis for fractal behaviour involves studying
the spatial distribution of grade. In a classic self-similar fractal (for
instance the view of a rocky coastline from above, Turcotte, 1997)
increasing the magnification results in a statistically similar image.
When analysing a bore core where one dimension is the length
along the core and the other is copper grade, both dimensions can
no longer be scaled uniformly. The definition of self affine fractals
describes how statistical behaviour changes as scale changes
(Turcotte, 1997) for fractals in this circumstance. For instance, in
terms of the standard deviation of the copper grade SD(x, g) along a
bore core, such as shown in Fig. 1.
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for a self affine fractal distribution, where x is the spatial ordinate
along the core and g is the grade.When the x scale is changed by the
factor r, the grade scale must be adjusted by rHa to retain the same
value of standard deviation, where Ha is known as the Hausdorff
measure and equals one (Afzal et al., 2011) for a self similar fractal.
Furthermore, the probability of a rock or pod of a given size having
grade g (P(g)) is described by the power law PðgÞfg�D, where the
index D is given by 2-Ha and is commonly called the fractal
dimension. Furthermore, for deterministic self affine fractals, if
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present such behaviour provides a simple formula to calculate the
statistical properties as scale changes.

2. Bore core study

The study presented here involves the Cadia East and Ridgeway
AueCu porphyry deposits, which are located in the Cadia district of
NSW Australia (Wilson et al., 2003; Sillitoe, 2010). Fig. 1 shows an
analysis of data from one bore core from the Cadia East AueCu
Porphyry deposit. The average copper assay for every 2 m of core is
plotted in Fig. 1A. This core was also measured by thermal infrared
reflection (TIR) at higher spatial resolution of 10 cm. Spectral data
can be used as a proxy for alteration, or the presence of veins, in the
rock and the statistical properties of the spectral data compared to
that of the grade measurement (Yang et al., 2005). In this case,
reflectance at 12,280 nmwas used as it gave the best correlation to
copper content in the core and is a proxy for quartz (Weinrich and
Christensen, 1996). A first step in the fractal analysis is to calculate
the variance of the grade as a function of N, the number of neigh-
bouring points along the core accumulated and averaged into one
spatial bin. Therefore, for a given N, the spatial bins span 2Nmetres
for the copper assay and 0.1N metres for the TIR data. As N is
increased the number of points used in calculating the variance
decreases until, on the scale of 40 m, the calculation is terminated.
If the data set is self affine, the variance will be proportional to
Ne2Ha and a log-log plot of variance vs.Nwill result in a straight line
(Ivanov, 1995). Fig. 1C shows the log-log plot of variance vs. N for
the two sets of core data superimposed. The straight-line trend for
each data set implies fractal behaviour. The interesting feature is
the similarity of the two slopes (�0.145 for copper assay and
�0.208 for the TIR data), and hence the statistical properties of the
spatial distributions of copper and veins in the rock. This suggests
that the veins in the rock do exert a controlling influence on the
distribution of copper and that fractal behaviour continues to small
size scales in this deposit.

Fig. 2 shows the analysis of the combined core data from eighteen
cores (5890 data points each representing 2 m of core length) that
intersect the current mining zone and the nearby volumes at Ridge-
way. There is sufficient data to analyse the cumulative grade histo-
gram for power law behaviour, as shown in Fig. 2A. Two linear
trending regions may be fitted, with a knee at a grade of 7300 ppm
copper. Aswas the case in the similar analysis of theWaterloo deposit
by Monecke et al. (2005) this is evidence of truncation of the power
law at higher grades. They ascribed this to the concentration mech-
anismapproaching anupper limit in grade. At larger scales itmayalso
be necessary to account for systematic variation of the mean grade,
possibly by a combination of fractal techniques and more traditional
geostatistical methods (Agterberg, 2012a,b). The spatial analysis
however shows a goodfit to a single power lawwith a slope of�0.193
of the log-log graph of variance vs. averaging parameter N.

2.1. Grade model formation

A simple fractal model of short-range grade variation in the rock
canbeconstructed fromthecoredatausing the spatial analysis.As the
core data is treated in one dimension an assumption is required to
convertmetresof core to tonnes of ore. In thefirst instance xmetres of
core will be taken as representative of a sphere with diameter x
centred at the bore core. For the minimal 2 m length this represents
about 13 tonnes. The toy fractal model for grade variation in the rock
can then be constructed by assuming a power law distribution of
grade, where D ¼ 1.942 is derived from the slope of the fit to the
variance observed for Ridgeway in Fig. 2B. The power law extends
from a minimum to a maximum grade representing in principle the
background grade of the rock and the truncation enrichment grade
respectively. The choiceof assumptions for converting the coredata to
tonnes, from linear combination to the toymodel’s spheres, results in
a range of dimensions from1.942 to1.903due to the small valueofHa.

3. Magnetic resonance measurements

This toymodel can then be comparedwith production data from
the mine to measure how well any fractal signature in the rock is
preserved by the mining process. The variability in the rock will be
reduced and modified by the mining process as it presents crushed
ore on the main conveyor. Ridgeway is a block cave mine consisting
of 15 parallel drives under the ore body, on each side of a drive
there are 8 or 9 active draw points. The rock from these draw points
is removed by loaders to one of two crushers at either end of the
mine, this primary crushed ore is then mixed onto a portal
conveyor. During the month of this evaluation 250 draw points
were used to provide orewith an average of approximately 86 draw
points used in a given hour. The loaders have a capacity of
approximately 14 tonnes and drop the load into hoppers for the
crushers with a maximum capacity of 200 tonnes.

Figure 1. The 2 m average copper concentration along one bore core (A) is analysed as a histogram in (B) and by calculating the variance after averaging over N neighbouring points
(C). This is carried out for the assay data as well as for thermal infra-red reflectance data (TIR) which is available on a 10 cm scale. The assay data is shifted to the right so that N for
both graphs represents equivalent lengths.

Figure 2. The grade of the combined bore cores is analysed for possible power law
dependency by the examining the log-log plot of the cumulative histogram (A). Two
linear regions in the plot have been fitted. After spatially averaging N neighbouring
points the variance vs. averaging parameter N is displayed in (B).
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