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The paper investigates the morphodynamic reaction of a schematic river to a perturbation of the sediment
input imposed at its upstream end. The consequent evolution of the initially equilibrium river can be studied
by means of various models (0-dimensional; 1-D parabolic and 1-D hyperbolic with uniform sediments; 1-D
hyperbolic with graded sediments), depending on the more or less simplified differential equations applied
for describing the water and sediment motion.
The paper discusses a number of analytical solutions obtained with two types of boundary conditions, namely:
(i) stepwise change of the sediment input, very often connected to anthropogenic actions, and (ii) sinusoidal
input variation with prescribed period, typically associated to the meteorological cycles (short period) or to
the geological and climate change (long period). The solutions provide an explicit expression for the Response
Time of the river for the condition (i) and the Attenuation Length of the river for the condition (ii). The two quan-
tities as defined in this paper do have a specific physical meaning, strictly connected with the corresponding
boundary conditions, which measures the reactivity of the river to external disturbances.
A comparative application of the analytical solutions to various (prevalently large) rivers of the world is given,
together with a final discussion.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Following appreciable variations of boundary conditions, due to
either natural (e.g. climate change) or anthropogenic (e.g. water extrac-
tion, damming or sediment mining) causes, rivers may experience
long-term morphological evolution, which will eventually affect large
portions of their watersheds.

Depending on the extent of the affected zone and the rapidity of the
reactions, counter measures to be applied are necessarily different, sub-
stantially falling in three categories. For relatively concentrated changes
in time and space, one may try to contrast directly their causes. For
more persistent and/or spread out variations, possible mitigation or
compensation of their negative effectsmay be considered. For perturba-
tions which are expected to propagate over extremely long distances
along the river for a very long time, the only feasible strategy is prepar-
ing the system for a progressive adaptation to its final conditions.

It may then be reasonable to introduce an overall characteristic
parameter of each river system, to be added to the many others (topo-
graphical, morphometric and hydrological) already used for their
“synchronic” classification. This parameter should be particularly signif-
icant in “diachronic” terms, namely of morphodynamic evolution. An

interesting parameter in this respect is the so-called Response Time,
which could be defined as the time required by the river to reduce to
a prescribed fraction (e.g. 1/2 or 1/e) the punctual perturbation applied
at the upstream end over the entire river length.

For some large rivers, the Response Time for the entire watercourse
defined in this way is in the range of 103–105 years (Dade and Friend,
1998). A systematic assessment of the Response Time for many tens
of the largest rivers in the world was made, following Castelltort and
Van Den Driessche (2003), by Gupta (2007), based on a diffusive para-
bolic equation as suggested by various authors (Allen and Densmore,
2000).

It is important to recall that the terms parabolic, hyperbolic and
elliptic (not mentioned here) follow from the classification of the
partial differential equations that describe a wide variety of phenom-
ena such as fluid flow, sediment transport, heat transport, elasticity,
etc. In particular, the partial differential equations that describe in
one-dimensional terms the water and sediment movement along a
river have a hyperbolic character. This implies that water and sedi-
ment disturbances created in the river system propagate, in the up-
stream and downstream directions, with a finite celerity (i.e. in a
definite time). Moreover, if the transported material is assumed to
be poorly sorted, each sediment grain size class gives rise to a different
propagating disturbance. The corresponding partial differential equa-
tions will constitute the hyperbolic (complete) one-dimensional
(1-D) model with sorted material.
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In the engineering practice, the hyperbolic 1-D model (both with
uniform and sorted materials) has been numerically applied to a great
number of real rivers, sometimes accounting for their transversal
dynamics (Nones et al., in press). The complete model with sorted
material has also been experimentally verified by laboratory experi-
ments (Cui et al., 2003a,b; Wright and Parker, 2005).

It should be noted, however, that the complete model (especially
with sorted material) is excessively cumbersome for long-time,
large-scale numerical simulations. It is therefore interesting to assess
the possibility of opportune simplifications. The most common of these
simplifications is assuming that water slopes, energy slope and bottom
slope coincidewhen averaged over a sufficiently long river reach. Under
this hypothesis (LUF or Local Uniform Flow), the complete hyperbolic
equations with uniform grain size material become of parabolic type
and are much easier to handle both from the numerical and analytical
points of view. In the parabolicmodel (like in heat diffusion) the distur-
bances present a spatial damping, but propagate along the riverwith an
infinite celerity (i.e. instantaneous propagation). Thus its solution
may strongly differ, in some cases, from the solution provided by
the complete (hyperbolic) model. Since the pioneering work of de
Vries (1975), the discussion of the hyperbolic model and its possible
simplifications has been an important issue of the river engineering
research.

The 1-D mathematical model, either in its complete form or conve-
niently simplified, is applied in this paper to evaluate the Response
Time as well as the other quantities defined later for assessing the
morphodynamic reaction of a schematic river to sediment input
changes.

As in many of the papers cited above, the schematic river is repre-
sented by an initial (equilibrium) linear bottom profile having the
length L and a constant slope I0 = H0/L, with H0 the initial relief of the
watershed. The inputs of water and sediment, either with a uniform
grain size or with an extended granulometry, are assumed concen-
trated at the upstream end of the river. Consequently, in absence of
a progressive feeding along the river from the tributaries (and, ulti-
mately, from the watershed slopes), the river width is assumed as
a constant, called B.

This is undoubtedly a very crude schematization, but all the same
necessary to achieve possible analytical solutions, providing a direct
evaluation of the long-term morphodynamics over the entire rivers
while permitting to compare among them the different rivers in relative
terms. By such a schematization, moreover, the 1-D partial differential
equations mentioned before can be further transformed into a 0-D
ordinary differential equation. The 0-D model has only the time as
independent variable and provides an even simpler solution for the
morphodynamic reaction of the river.

The quantification of the Response Time as defined above refers to
a stepwise perturbation; namely the sudden change from a certain
(constant) value to another (also constant) value of the sediment fluxes
entering the river system from the watershed slopes, but assumed
concentrated at the upstream boundary of the river. This perturbation
is very often connected to an anthropogenic action: it may simulate,
for example, the effects of a sudden reduction or increase of sediment
production, respectively caused by the damming of an important tribu-
tary or by a rapid deforestation of the basin surface.

By contrast, a different type of perturbation having a cyclic character
is typically associated to natural causes: for example, the change of
sediment input due to seasonal variations (with the oscillation period
of the relevant flood waves, up to one year) or due to much longer
periodicities (up to millennia or more), like the geological ones. Period-
ical forcing involves a different reaction quantity of the river, called
Attenuation Length.

In the next sections it shall provide a brief description of vari-
ous models, more or less sophisticated, together with some of
their possible analytical solutions for either significant boundary
condition.

The models considered in this paper are classified below, according
to the following features:

• spatial dimensions: zero-dimensional (0-D) and one-dimensional
(1-D);

• type of perturbation at the upstream boundary: stepwise and
sinusoidal;

• fundamental equations: parabolic (LUF) and hyperbolic (complete);
• grain size composition of the transported sediments: uniform and
sorted.

A verification of the various simplified models has been made via
their mutual comparison and, ultimately, against the (complete) hyper-
bolic model with sorted materials.

2. Zero-dimensional model

In Figure 1 we report the generic schematization of the 0-D model
of a river, corresponding to the configuration mentioned in the
Introduction section. The 0-D approach assumes that the morpholog-
ical characteristics of the river, although varying in space, are fully
represented by the time-dependent bottom slope at the downstream
end, assumed to be the same along the entire watercourse. The anal-
ysis assumes that the river evolution starts from an initial configura-
tion (indicated with the subscript 0) and changes during the time t.
As in other models, the hypothesis made is that the river length L
and the width B remain constant during the entire evolution.

The subsequent necessary linearizations, the maximum elevation
H(t) of the river bottom, and the variable during the time t, are
expressed in terms of small deviation H′(t) from the initial equilibrium
condition H0.

H tð Þ ¼ H0 þ H′ tð Þ ¼ H0⋅ 1þ H′ tð Þ
H0

" #
: ð1Þ

In the samemanner, the bottom slope I(t) of the river, is expressed
by the equilibrium slope I0 and a time-variable deviation I′(t).

I tð Þ ¼ I0 þ I′ tð Þ ¼ I0⋅ 1þ I′ tð Þ
I0

" #
: ð2Þ

For computing the annual sediment transport Qs(t) along the
river, we use a monomial equation of the Engelund–Hansen type.

Qs tð Þ ¼ α′⋅Q
mI tð Þn
Bpdq

ð3Þ

Fig. 1. Scheme of the 0-D model.
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