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A B S T R A C T

Background and Objective: Viruses are infectious agents that replicate inside organisms and

reveal a plethora of distinct characteristics. Viral infections spread in many ways, but often

have devastating consequences and represent a huge danger for public health. It is impor-

tant to design statistical and computational techniques capable of handling the available

data and highlighting the most important features.

Methods: This paper reviews the quantitative and qualitative behaviour of 22 infectious dis-

eases caused by viruses. The information is compared and visualized by means of the

multidimensional scaling technique.

Results: The results are robust to uncertainties in the data and revealed to be consistent

with clinical practice.

Conclusions: The paper shows that the proposed methodology may represent a solid math-

ematical tool to tackle a larger number of virus and additional information about these

infectious agents.

© 2016 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Viruses exert enormous damage on humans worldwide and
are the single most important cause of infectious morbidity
and mortality. History was, and still is, shaped since ancient
times by viral diseases. These diseases began to be character-
ized in the 19th century leading to the identification and
differentiation of many viral illnesses [1].The first viruses were
identified at the end of the 19th century and since then the
process of discovery has continued steadily with a growing mo-
mentum in these years. In fact, in recent years it is possible
to visualize viral structure at an atomic level of resolution,

nucleotide sequences of viral genomes are known, and func-
tional domains of numerous viruses and enzymes have been
established [1,2]. This information is now being applied to the
development of diagnostic tools and effective antiviral therapies.

The classification of viruses has also evolved. Firstly, sub-
classifications were based on pathologic features such as the
preference of a specific organ (for example, the liver in viral
hepatitis). Secondly, some epidemiologic characteristics were
defined as the transmission by arthropods (arbovirus, for
example) [1]. The current classifications are based on the type
and structure of the viral nucleic acid and its replication strat-
egy, the symmetry type of the capsid of the virus, and the
presence or absence of a lipid envelop [1,2].
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More than 2000 species of viruses have been identified and
approximately 650 are capable of infecting humans and animals
[2]. Diseases can range from the common cold to fatal events
such as Ebola, Smallpox or Rabies [2]. Globally, viral diseases
are very diverse and present several degrees of complexity.

In this study we will adopt multidimensional scaling (MDS)
to visualize the relationships between 22 selected human viral
infectious diseases. Some viruses were selected based on recent
viral outbreaks and presence in the media (for example, In-
fluenza A virus subtype H5N1, Ebola and Chikungunya), others
were chosen due to historical reasons (for example, Rabies, Po-
liomyelitis and Smallpox), and still others due to their
prevalence and incidence in human populations (for example,
Influenza, Rhinovirus and Norovirus). In two viral diseases
(Human Immunodeficiency Virus and Rabies) we consider both
the treated and untreated paradigms of the disease due to the
huge discrepancy in mortality.

MDS is proven to obtain a new perspective on visualizing
global data associated with human pathologies. MDS is a set
of techniques used to analyse similarities in data that produce
spatial or geometric representations of complex objects [3–5].
MDS had its origin in behavioural sciences for its help in un-
derstanding judgements of individuals (as preference, or
relatedness) concerning elements in a set of objects [6–8]. Nowa-
days, MDS is used with a large variety of real data, such as
biological taxonomy [9–12], finance [13,14], marketing [15], so-
ciology [16], physics [17], geophysics [18–20], communication
networks [21,22], biology and biomedics [23,24], among others
[25,26].

Bearing these ideas in mind, the paper is organized as
follows. In Section 2 we present the MDS technique. In Section
3 we study and compare data regarding 22 virus diseases.
Finally, in Section 4 we draw the main conclusions.

2. Multidimensional scaling

Given s objects in a m-dimensional space and a measure of
proximity, δ ij , between objects i and j, a symmetric s × s matrix,

C = [ ]δ ij , of item to item (dis)similarities is calculated in a first
step. The MDS algorithm produces a s × q (q < m) configura-
tion, X, representing point coordinates (items), where q is
specified by the user. Thus, row i from matrix X gives the co-
ordinates of object i in the q-dimensional embedding space.
Configuration X preserves, as best as possible, the proximities
between pairwise elements in the higher m-dimensional space
and unveils the underlying data structure. MDS is, conse-
quently, different from other similar techniques, such as factor
and cluster analysis, because there are no assumptions con-
cerning which factors might drive each dimension. Additionally,
MDS is able to treat distinct types of data, has better conver-
gence rates, and is less complex than other methods [3,27].

In order to arrive at the best configuration X, MDS evalu-
ates different alternative configurations while minimizing a
goodness-of-fit function. This problem, equivalent to mini-
mizing the raw stress function, σ2, can be formulated as [28]:
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where zij is a user chosen non-negative weight and dij is a
measure of the (dis)similarities among the items in the em-
bedding space. Therefore, dij is usually a distance measure.
Smaller (larger) distances between two objects translate into
more (less) similarities between them. For example, the
Minkowski distance provides a general way to specify dis-
tance for quantitative data in a multidimensional space:
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where xik is the value of dimension k for object i and αk is a
weight factor.When αk = 1, the Euclidean and the city-block dis-
tances are obtained for r = 2 and r = 1, respectively. Nevertheless,
the MDS technique allows users to choose other metrics for
the comparison of objects that can be better adequate for their
data. In the sequel we will adopt the Canberra distance and
the cosine correlation.

There are different stress measures, such as the normal-
ized raw stress, which is σ2 divided by the sum of squared
dissimilarities. Possible alternatives are Kruskal’s stress-1 and
Kruskal’s stress-2, which divide σ by the sum of squared dis-
tances, or by a function of the variances of distances,
respectively. Another example is the S-stress measure given
by the sum of squared errors between squared distances and
squared dissimilarities [29,30].

The Shepard diagram is used to infer the quality of the MDS
solution. Let pij denote the similarities between objects i and
j. A Shepard diagram consists of pairs p pij ij,( ) and pij ij, δ( ). If a
line connecting the pairs pij ij, δ( ) is drawn, then the approxi-
mation error, concerning dissimilarities of each object, is given
by dij ij− δ . The Shepard diagram is thus useful for visualizing
the residuals and outliers resulting from the MDS applica-
tion to the data. A narrow scatter around the 45 degree line
indicates a good fit between dij and δ ij .

The stress plot represents σ2 versus the number of dimen-
sions q of the MDS maps. Usually, we get a monotonic
decreasing chart and we choose q as a compromise between
reducing σ2 and having a low dimension for the MDS charts.

MDS can be divided according to the classification of data
similarities, the number of similarity matrices and the nature
of the MDS model.We thus have the non-metric, or metric MDS,
if similarity data are qualitative or quantitative. In what con-
cerns the number of similarity matrices and nature of the model
we have classical MDS (i.e., with one matrix and unweighted
models), replicated MDS (i.e., with several matrices and
unweighted models) and weighted MDS (i.e., with several ma-
trices and weighted models).

The MDS interpretation is based on the emerging clusters
and distances between points in the map, rather than on their
absolute coordinates, or the geometrical form of the locus.Thus,
we can rotate or translate the MDS chart since the distances
between points remain identical. Usually, two or three dimen-
sional charts are selected, because they allow a direct graphical
representation.

MDS has advantages over other methods, such as princi-
pal component analysis (PCA), since MDS can follow similarity/
dissimilarity matrices based on several distinct metrics. MDS
uses the inter-object distances rather than the coordinates of
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