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a b s t r a c t

By introducing the wavelet multiscale method and the homotopy method to the inversion
process for the parameter identification problem of partial differential equations, a joint
inversion method called the wavelet multiscale-homotopy method is proposed, which is
globally convergent, computationally efficient, and has the anti-noise ability. As a practical
problem, the parameter identification problem of the saturation equation in the fractional
flow formulation of the two-phase porous media flow equations is solved. Numerical
results validate the method’s merits.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following parameter identification problem of partial differential equations
L(p(x), t)u(x, t) = s(x, t), x ∈ Ω, 0 ≤ t ≤ T ,
Eu(x, 0) = h(x), x ∈ Ω,
Bu(x, t) = g(x, t), x ∈ ∂Ω, 0 ≤ t ≤ T ,
Au(x, t) = f (x, t), x ∈ Γ ⊂ Ω, 0 ≤ t ≤ T ,

(1)

where x = (x1, x2, . . . , xn)⊤,Ω ⊂ Rn is a bounded domain, ∂Ω is the boundary ofΩ ,Γ is a part ofΩ , u(x, t) is a sufficiently
smooth function, and s(x, t) is a piecewise smooth source function. L, E, B and A are differential operator, initial condition
operator, boundary condition operator and auxiliary condition operator, respectively. p(x) is the parameter to be identified
in L.

As u(x, t) nonlinearly depends on p(x), a nonlinear operator J(p) can be defined as

J(p) = Au(p; x, t) − f (x, t) x ∈ Γ ⊂ Ω, 0 ≤ t ≤ T , (2)

then the identification for the parameter p(x) is reduced to the output least squares problem

min ∥J(p)∥2. (3)

Generally speaking, the problem of (3) presents a number of difficult challenges, due to its ill-posedness, nonlinearity
and large computational cost. First, the solution does not depend continuously on the measurement data, that is, a minor
disturbance of the measurement data may cause large change on the solution. Second, nonlinear dependence of the
measurement data with respect to the solution causes the presence of numerous local minima, so a good initial estimate is
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crucial for any numerical methods. Finally, the forward model is described by the solution of a partial differential equation
which is computationally demanding to solve. So the key issue is how to quickly find a stable solution in a wide range.

In order to overcome these difficulties, this paper combines the wavelet multiscale method with the homotopy method,
so as to propose a wavelet multiscale-homotopy method for the general parameter identification problem of partial differ-
ential equations.

Multiscalemethodwas first studied to solve the forward problem, for example, the 3D convection–diffusion equation [1],
the convection–diffusion–reaction problems [2], the two-phase immiscible flow simulations in heterogeneous porous
media [3,4], and then was extended to the inverse problem [5]. As a special class of multiscale methods, wavelet multiscale
method has recently emerged in the field of inversion. Fu et al. [6] presented awaveletmultiscalemethod for identifying the
velocity in a two-dimensional acoustic wave equation. Ding et al. [7] presented a wavelet multiscale method for identifying
the conductivity in Maxwell equations. Zhang et al. [8] presented a wavelet multiscale method for identifying the porosity
in a fluid-saturated porous media. Chiao et al. [9] presented a wavelet multiscale procedure for identifying the parameter of
non-linear geophysics. For electrical capacitance tomography [10] and diffuse optical tomography [11], wavelet multiscale
method was shown to be very effective. These works showed that the wavelet multiscale method can enhance stability of
inversion, accelerate convergence and cope with the presence of local minima to reach the global minimum. The rationale
behind this success is that the cost function shows stronger convexity and has less minima at longer scale such that the
global minimum can be achieved. Therefore, best results can be obtained, using this solution to the initialization of the
optimization problem, at the shorter scale until finding the minimum at the original scale.

Homotopy method provides an ideal tool for solving the nonlinear problems due to its widely convergent property
[12–14]. It is a very interesting research opportunity to use homotopy method to solve inverse problems. Successful
applications of this method include the two-phase inverse Stefan problem [15], the inversion of the elliptical equation [16],
the PEM identification of ARMAX models [17], the inverse heat conduction problem [18], the parameter estimation of
the nonlinear diffusion equation [19], the inversion of the two-dimensional acoustic wave equation [20] and the well-log
constraintwaveform inversion [21]. All theseworks showed the effectiveness of homotopymethod on the inverse problems.

The rest of this paper is organized as follows. Section 2 derives the homotopy method for the general parameter
identification problem. Section 3 presents the wavelet multiscale-homotopy method. Section 4 provides the application to
the parameter identification problem of the saturation equation in the fractional flow formulation of the two-phase porous
media flow equations. The conclusions of this paper are summarized in Section 5.

2. Homotopy method

Since the problem (3) is ill-posed, regularization method must be employed. In Tikhonov regularization, the problem (3)
is replaced by the minimization problem

∥J(p)∥2
+ α∥p − p0∥2

→ min, (4)
where α is the regularization parameter, p0 is an initial estimate for a solution p∗ of (2). The iteratively regularized
Gauss–Newton method (see [22])

pk+1
= pk − [J ′(pk)∗J ′(pk) + αI]−1

[J ′(pk)∗J(pk) + α(pk − p0)], k = 0, 1, . . . (5)
can be used to solve (4). It has fast convergence speed and good stability, however, it is a locally convergent scheme.
To overcome this weakness, we consider to introduce the homotopy method.

It is easy to know that (4) is equivalent to the corresponding normal equation

J ′(p)∗J(p) + α(p − p0) = 0. (6)
To solve this normal equation, the fixed point homotopy equation is considered

H(p, µ) = µ[J ′(p)∗J(p) + α(p − p0)] + (1 − µ)(p − p0) = 0, (7)
where µ ∈ [0, 1] is the homotopy parameter, p0 is an arbitrary initial estimate. Divide the interval [0, 1] into 0 = µ0 <
µ1 < · · · < µN = 1, and forµ = µk, use some iterativemethod to solve (7) sequentially. As the solution p0 ofH(p, µ0) = 0
is known, it can be taken as the initial approximation of the next equation H(p, µ1) = 0. Assume that the approximation
solution pk of H(p, µk) = 0 has already been found. By linearization method, H(p, µk+1) = 0 can be solved with J(p)
replaced by J ′(pkj )(p − pkj ) + J(pkj ). Then, the iterative formula is given as follows

pkj+1 = pkj − [µkJ ′(pkj )
∗J ′(pkj ) + (1 − µk + αµk)I]−1

[µkJ ′(pkj )
∗J(pkj ) + (1 − µk + αµk)(pkj − p0)],

j = 0, 1, . . . , km, pk0 = pk−1, pk = pkkm+1, k = 1, 2, . . . ,N. (8)

If µk =
k
N by an isometric division and km ≡ 0, then (8) becomes a more simple formula

pk+1
= pk −
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k = 0, 1, . . . ,N − 1. (9)
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