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a b s t r a c t

In this paper, we first propose a diffusive within-host virus dynamics model with both
virus-to-cell and cell-to-cell transmissions. Then, we consider the discretization of the
model by using nonstandard finite difference scheme. It is then followed by the investi-
gation of the global stability of the equilibria of the discrete model. Our study shows that
if the basic reproduction number R0 ≤ 1, then the infection-free equilibrium is globally
asymptotically stable; however ifR0 > 1, then the infection equilibrium is globally asymp-
totically stable. Numerical simulations are presented to illustrate our theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The classical model for within-host virus dynamics is a system of three ordinary differential equations [1,2], where the
key assumption is that cells and viruses are well mixed. Recent study shows that the interaction between pathogens and the
immune response actually tends to be local within the body of infected hosts [3]. Hence, there is a need to study the effect
of spatial structure on virus dynamics. To this end, Wang andWang [4] considered the following model taking into account
the randommobility of viruses

∂T
∂t

= B − d1T (x, t)− β1T (x, t)V (x, t),

∂ I
∂t

= β1T (x, t)V (x, t)− d2I(x, t),

∂V
∂t

= d△V (x, t)+ γ I(x, t)− d3V (x, t),

(1.1)

where T (x, t), I(x, t) and V (x, t) denote the densities of uninfected cells, infected cells and free virus at position x at time t ,
respectively. B is the recruitment rate of the uninfected cells.β1 is the virus-to-cell infection rate. d1, d2 and d3 are death rates
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of uninfected cells, infected cells and free viruses, respectively. γ is the recruitment rate for free viruses. d is the diffusion
coefficient and∆ is the Laplacian operator. Then they investigated the existence of traveling wave solution when x ∈ R.

Since then, the study of dynamical behavior of virus dynamics with spatial structure has attracted much attention, for
example Brauner et al. [5], Stancevic et al. [6], Hattaf and Yousfi [7,8], McCluskey and Yang [9], Wang et al. [10], Wang and
Wang [11], Xu and Ma [12], Zhang and Xu [13]. Many of these studies only focus on virus-to-cell spread in the bloodstream
even though some studies reveal that cell-to-cell transmission is vital to spread of virus in vivo such as Bangham [14], Cul-
shawet al. [15], Dimitrov et al. [16], Gummuluru et al. [17], Sigal et al. [18].Motivated by this fact, some researchers have con-
structed ODE and DDE models to investigate the dynamics of within-host virus dynamics models to take both virus-to-cell
and cell-to-cell transmissions into account, for instance, Lai and Zou [19,20], Li andWang [21], Pourbashash et al. [22], Yang
et al. [23]. To the best of our knowledge, there is barely any work studying the diffusive within-host virus dynamics model
with both virus-to-cell and cell-to-cell transmissions. Therefore, in this paper, we propose the following model

∂T
∂t

= B − d1T (x, t)− β1T (x, t)V (x, t)− β2T (x, t)I(x, t),

∂ I
∂t

= β1T (x, t)V (x, t)+ β2T (x, t)I(x, t)− d2I(x, t),

∂V
∂t

= d△V (x, t)+ γ I(x, t)− d3V (x, t),

(1.2)

where β2 ≥ 0 is the cell-to-cell infection rate. When β2 = 0, system (1.2) reduces to system (1.1).
In general, system of PDEs cannot be solved explicitly. Thus, people seek numerical ones instead. However, the problem

of proper selection of the discrete scheme so that the global stability of equilibria of the corresponding continuous models
can be preserved remains open [24]. Mickens made an attempt in this regard, by proposing a robust nonstandard finite
difference (NSFD) scheme [25], which has been widely employed in the study of different epidemic models, for example,
Arenas et al. [26], Ding et al. [27], Hattaf and Yousfi [28,29], Jódar et al. [30], Liu et al. [31], Muroya et al. [32]. More recently,
Qin et al. [33] used the NSFD scheme to discretize system (1.1) and found that the discrete model has the same dynamics as
the original system.

The purpose of this paper is to study the dynamics of the discretized system of (1.2), by using the NSFD scheme. We
first give some basic results about the system in Section 2. Then, using the theory of M-matrix, we prove, in Section 3,
that the solution of discrete model is positive for given initial values and any spatial and time step sizes. In Section 4, by
constructing discrete Lyapunov functions, we show that the global stability of the discretized model depends only on the
basic reproduction number,R0. It is then followed by numerical simulations, in Section 5, and a brief conclusion in Section 6.

2. Local stability of equilibria of system (2.1)

For the convenience of discussion, introduce

T =
d1T
B
, I =

d1I
B
, V =

β1V
d1
, t = d1t,

ρ0 =
β2B
d21
, ρ1 =

d2
d1
, ρ2 =

β1γ B
d31

, ρ3 =
d3
d1
, D =

d
d1
.

And then after dropping the overhead bars for simplicity of notations, one obtains

∂T
∂t

= 1 − T (x, t)− T (x, t)V (x, t)− ρ0T (x, t)I(x, t),

∂ I
∂t

= T (x, t)V (x, t)+ ρ0T (x, t)I(x, t)− ρ1I(x, t),

∂V
∂t

= D△V (x, t)+ ρ2I(x, t)− ρ3V (x, t).

(2.1)

Now, we assume that system (2.1) is subject to initial value condition

T (x, 0) = φ(x) ≥ 0, I(x, 0) = ϕ(x) ≥ 0, V (x, 0) = ψ(x) ≥ 0, x ∈ Ω,

and Neumann boundary condition

∂V
∂ n⃗

= 0, t > 0, x ∈ ∂Ω,

whereΩ is a connected, bounded domain in Rn with smooth boundary ∂Ω , ∂
∂ n⃗ is an outward normal vector of ∂Ω .

It is easy to see that system (2.1) always has an infection-free equilibrium E0(1, 0, 0). And if

R0 =
ρ2 + ρ0ρ3

ρ1ρ3
,
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