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a b s t r a c t

While the lattice Boltzmann method (LBM) has become a powerful numerical approach
for solving complex flows, the standard lattice Boltzmann method typically uses a square
lattice grid in two spatial dimensions and cubic lattice grid in three dimensions. For
inhomogeneous and anisotropic flows, it is desirable to have a LBM model that utilizes
a rectangular grid. There were two previous attempts to extend the multiple-relaxation-
time (MRT) LBM to a rectangular lattice grid in 2D, however, the resulting hydrodynamic
momentum equation was not fully consistent with the Navier–Stokes equation, due to
anisotropy of the transport coefficients. In the present work, a new MRT model with an
additional degree of freedom is developed in order to match precisely the Navier–Stokes
equation when a rectangular lattice grid is used. We first revisit the previous attempts
to understand the origin and nature of anisotropic transport coefficients by conducting
an inverse design analysis within the Chapman–Enskog procedure. Then an additional
adjustable parameter that governs the relative orientation in the energy–normal stress
subspace is introduced. It is shown that this adjustable parameter can be used to fully
eliminate the anisotropy of transport coefficients, thus the exact Navier–Stokes equation
can be derived on a rectangular grid. Our theoretical findings are confirmed by numerical
solutions using three two-dimension benchmark problems, i.e. the channel flow, the cavity
flow, and the decaying Taylor–Green vortex flow. The numerical results demonstrate that
the proposed model shows remarkably good performance with appropriate choice of
model parameters.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As an alternative numerical method based on kinetic theory, the lattice Boltzmann method (LBM) has attracted a great
deal of attention since its inception about 25 years ago [1,2]. The basic idea is to design a fully discrete version of the
Boltzmann equation, with aminimum set of discretemicroscopic velocities, that can yield the exact Navier–Stokes equation
through the Chapman–Enskog analysis. From a computational viewpoint, the advantages of LBM include its algorithm
simplicity, intrinsic data locality (thus straightforward to perform parallel computation), and capability to conveniently
incorporate complex fluid–solid and fluid–fluid boundary conditions. Hence, LBM has been widely employed in simulations
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of complex fluid systems, such as multiphase flows [3,4], complex viscous flows with deformable boundary and complex
geometry such as porous media [5–7], and micro-scale flows [8,9].

Despite the success of LBM, the standard LBM is restricted to a square grid or hexagonal grid in two spatial dimensions
(2D) and a cubic grid in three spatial dimensions (3D). This restriction is aligned with the set of microscopic velocities used
and is desirable formodel isotropy. However, this could result in a low computational efficiencywhen the flow field is highly
nonuniform, inhomogeneous, and anisotropic, such as a boundary layer flow where the velocity gradients in one spatial
dimension is much stronger than the other directions. To alleviate this problem within LBM, different approaches have
been developed to allow the use of a nonuniform grid. One approach is to employ an interpolation method to decouple the
grid associated with lattice Boltzmann microscopic velocities, from the numerical mesh. Pioneering work in this direction
includes the studies of Filippova and Hänel [10,11] who reconstructed distribution functions at arbitrary locations using
spatial and temporal interpolations. Another approach is to introduce local grid refinement or use different mesh densities
for different regions of the flow (i.e., multi-blockmethods) [12]. Methods to communicate distribution functions, defined on
coarse and fine grids, at the block interfaces have been developed. Other methods to use a non-uniform grid typically utilize
a local interpolation scheme [13,14].While these approaches have been actively extended and applied inmany applications,
their accuracy is limited by the interpolation scheme which may also introduce additional artificial dissipation. Therefore,
it is desirable to construct a lattice Boltzmann method with a more flexible grid that is free of interpolation.

Inspired by the work of Koelman [15], Bouzidi et al. [16] made the first attempt to construct a multiple-relaxation-
time (MRT) LBM on a two-dimensional rectangular grid. The model showed good performance with appropriate choice
of model parameters, but the resulting hydrodynamic momentum equation is not fully consistent with the Navier–Stokes
equations. Another attempt was made by Zhou [17] who redefined the moments so that the transformation matrix for
a rectangular grid was identical to that for a standard MRT on a square grid. However, the modifications suggested in
Zhou [17] led to anisotropic fluid viscosity. Hegele et al. [18] indicated some extra degrees of freedom should be employed
to satisfy the isotropy conditions for rectangular lattice Boltzmann scheme. There are three possible approaches: decoupling
the discretizations of the velocity space from spatial and temporal discretization, modification of a collision operator
with additional parameter, and adoption of more discrete microscopic velocities. They introduced two extra microscopic
velocities to extend the D2Q9model with BGK collision operator andwere able to restore, on a rectangular grid, the isotropy
condition required for the Navier–Stokes equation. They also suggested that four new velocities are needed in order to
correctly extend the D3Q19 model onto a noncubic 3D grid.

In the present work, we explore the possibility to restore the isotropy condition on a 2D rectangular grid without
introducing any additional microscopic velocity. We take advantage of some of the flexibility within the MRT LBM
scheme [19,20]. For this purpose, wewill introduce an additional parameter in the energy–normal stress moment subspace.
Before presenting our novel MRT LBM scheme on a rectangular grid, previous MRT schemes on a rectangular grid are firstly
reviewed in Section 2. An inverse design analysis will be used to derive the equilibriummoments and the anisotropy of the
transport coefficients for a rectangular grid is revealed. In Section 3, our new scheme with an additional free parameter is
constructed in order to restore the isotropy for a rectangular grid, namely, the usual Navier–Stokes hydrodynamic equations
are derived using a rectangular grid. Also, the coupling relationships between relaxations times and determination of
computational parameters are re-interpreted, which enables the flexibility to choose computational parameters according
to different flow problems. In Section 4, numerical validation of our new scheme is provided using a 2D channel flow, a 2D
lid-driven cavity flow and 2D Taylor–Green vortex flow. Concluding remarks are provided in Section 5.

2. An analysis of previous MRT LBM schemes on a rectangular grid

2.1. The model of Bouzidi et al. [16]

We begin with the MRT LBM scheme [19] in 2D, which has been shown to provide more flexibility in relaxing different
moments and to significantly improve computational stability and accuracy, while simplicity and computational efficiency
of LBM are retained. However, we consider a rectangular grid as shown in Fig. 1, where the non-zero lattice velocity in the x
direction is one, and in the y direction is a (a < 1). Following the spirit of the D2Q9 model but with the different velocities
in x and y directions, the discrete velocities are defined as

ei =


(0, 0) i = 0
(±1, 0), (0, ±a) i = 1 − 4
(±1, ±a) i = 5 − 8.

(1)

The distribution functions in MRT LBM evolve as

fi (x + eiδt) − fi (x, t) = Ωi (2)

where fi is the distribution function associated with the molecular velocity ei at position x and time t, Ωi is the collision
operator.

In MRT LBM, the streaming process takes place in the physical space while the collision process is performed in the mo-
ment space. The nine distribution functions define nine degrees of freedom, which implies that nine independent moments
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