
Computers and Mathematics with Applications 71 (2016) 2313–2329

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Constrained optimal control applied to vaccination for
influenza
Jungeun Kim a, Hee-Dae Kwon b, Jeehyun Lee a,∗

a Department of Computational Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea
b Department of Mathematics, Inha University, Incheon 402-751, Republic of Korea

a r t i c l e i n f o

Article history:
Available online 21 January 2016

Keywords:
Optimal control
State constraints
Control constraints
Structured population
Time dependent vaccination

a b s t r a c t

The efficient time schedule and prioritization of vaccine supplies are important in miti-
gating impact of an influenza pandemic. In practice, there are restrictions associated with
limited vaccination coverage and the maximum daily vaccine administration. We extend
previous work on optimal control for influenza to reflect these realistic restrictions using
mixed constraints on state and control variables. An optimal control problem is formu-
lated with the aim of minimizing the number of infected individuals while considering
intervention costs. Time-dependent vaccination is computed and analysed using a model
incorporating heterogeneity in population structure under different settings of transmis-
sibility levels, vaccine coverages, and time delays.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An epidemic outbreak causes a crisis in public health accompanying social fear as well as a direct loss due to the disease.
In developing a response plan tominimize socio-economic losses in disease outbreak, it is important to predict the transmis-
sion dynamics of an infectious disease, to compare the effects of different control strategies, and to design the best strategy.
The World Health Organization(WHO) issued warning of pandemic influenza and encouraged to prepare countermeasures
in 1999, but it did not drawmuch attention until the emergence of Severe Acute Respiratory Syndrome(SARS) in 2002–2003.
Since the first SARS case was reported from Canton, China on December 2002, more than 31 countries worldwide reported
7956 confirmed cases including 666 fatal cases to the WHO by the end of 21 May, 2003. The SARS aroused great interest in
the use of mathematical models to predict the course of the epidemic and to evaluate various management strategies [1].
This interest triggered studies for investigating the dynamics and control of infectious diseases and has been reinforced by
the treatment of a pandemic including the influenza A(H1N1) 2009 [2].

Vaccination is the principal control measure for reducing the spread of many infectious diseases. The optimization of
vaccination policies before their implementation is essential to better allocate resources and to minimize disease burdens.
Recent advances have been made in optimizing vaccine distribution policies in specific settings [3–5]. Several studies have
applied optimal control techniques to determine immunization strategies [6,7]. However, it is still complicated and contro-
versial to address the best possible strategies because the dynamics of epidemics and the optimal use of vaccines depend
on various factors including the structure of the population, vaccine availability, and transmissibility levels. In this context,
we take into account of the size and heterogeneous dynamics of groups, different transmission levels, the total and daily
maximum amount of vaccines available, and time delays in vaccine implementation.
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Fig. 1. Flow chart for the SEIAR model.

In this paper, we seek optimal time-dependent vaccination strategies within the vaccine availability. We begin by in-
troducing a deterministic, compartmental model of influenza transmission incorporating the structure of the population
with different dynamics. We then present the formulation of the optimal control problem to minimize the incidence while
satisfying the constraints of the total and daily maximum amount of vaccines available. We use the penalty method to ap-
proximate this constrained optimization problem and derive an optimality system that characterizes the optimal control.
Finally, we present the results of numerical simulations under various settings and conclude with a summary.

2. Mathematical models

The influenza model, SEIAR, is an extension of the standard SEIR model incorporating asymptomatic compartment [8].
In the SEIAR model, infected individuals in the exposed stage can either develop symptoms and move to an infective stage
or develop no symptoms and move to an asymptomatic infective stage. This baseline model is modified to include control
measures of vaccination and antiviral treatment. The nonlinear systemof ODEs describing the influenza dynamics is given by

S ′(t) = −βS(t)Λ(t)− ψν(t)S(t)
E ′(t) = βS(t)Λ(t)− κE(t)
I ′(t) = pκE(t)− αI(t)− τ I(t)
A′(t) = (1 − p)κE(t)− ηA(t)
R′(t) = f αI(t)+ τ I(t)+ ηA(t)+ ψν(t)S(t),

(2.1)

withΛ(t) = ϵE(t)+ (1 − q)I(t)+ δA(t) and the initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0, R(0) = R0.

Fig. 1 shows a flow diagram for model (2.1).
The model classifies individuals into five key compartments of susceptible (S), exposed (E), symptomatic infective (I),

asymptomatic infective (A) and removed (R). The number of contact events sufficient for transmitting an infection is βN
by mass action incidence, where N is the total population size. A fraction p of individuals in the exposed stage proceeds
to the infective stage at the rate κ and the remainder goes to the asymptomatic infective stage also at the rate κ . Exposed
individuals are assumed to reduce infectivity by a factor of ϵ, with 0 ≤ ϵ ≤ 1. The compartment E represents the latent
stage when ϵ = 0 and the initial asymptomatic and mildly infectious stage when ϵ > 0. Infective members leave the
compartment at the rate α with a fraction f recovering from the disease, whereas the rest dying of infection. On average
infective individuals have their contact rate reduced by a factor of q. Asymptomatic members have their infectivity reduced
by a factor of δ, with 0 ≤ δ ≤ 1, and progress to the removed compartment at the rate η. The time dependent control
function ν(t) measures the rate at which susceptible individuals are vaccinated with vaccine efficacy ψ and the infective
individuals are treated at the rate τ during the epidemic period.

In developing response plans for disease outbreaks, one seeks strategies that can minimize the incidence and/or disease
related mortality while considering the cost of intervention strategies. The goal is to minimize the number of people who
become infected at a minimal efforts of vaccination. Thus, the objective functional is given by

J(ν) =

 T

0
PI(t)+ Qν2(t)dt.

In general, vaccination coverage and the maximum daily vaccine administration are limited during an epidemic. In
our optimal control formulation, realistic restrictions associated with vaccination are incorporated using state variable
inequality constraints. This can be stated

0 ≤ ν(t) ≤ 1
ν(t)S(t) ≤ νmax (2.2) T

0
ν(t)S(t)dt ≤ νtotal,
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