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a b s t r a c t

We consider an incompressible quasi-Newtonian fluid–structure interaction (FSI) problem
formulated in a monolithic framework, where the matching conditions at the moving
interface are satisfied. The fully discretized FSI system is discussed with detailed analysis
for the stability and error estimate as well as numerical experiments that confirm the
theoretical results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid–structure interaction (FSI) problems have various applications in engineering and biology, where two dynamics,
fluid flow and deformable structure, are considered in one system. Simulations of blood flow, tidal current turbines and
gas explosions in pipelines are some well-known applications in this research area [1–6]. FSI problems concern the mutual
influence between two dynamics: the domain of fluid is determined by structure deformation, and structure movement is
determined by fluid stress.

The numerical discretization of an FSI system poses great computational challenges due to the nature of its complexity.
A fully-coupled scheme, which solves the fluid and structure subproblems simultaneously, results in a large system, which
in turn requires large memory storage and a special solver. However, the monolithic approach has been used widely, in
particular for blood flow problems, where a stability issue caused by the added-mass effect exists in many partitioned
algorithms [7–11].

Recently, we used a monolithic approach to investigate the finite element approximation of a quasi-Newtonian FSI
problem [12]. The fluid is quasi-Newtonian, where the fluid viscosity is a function of the magnitude of the deformation
tensor and the fluid does not have any memory or elastic properties. Examples of such fluids include blood, lubricants, and
paints. Numerical studies on FSI involving this type of fluids are found in [13,4,14]. The Arbitrary Lagrangian Eulerianmethod
(ALE)was used to dealwith the time-dependent domain of the fluid. In the ALEmethod, an invertible and sufficiently regular
ALE mapping is introduced to obtain a conforming mesh at arbitrary time following the interface movement as the image
of a fixed mesh in the reference domain. We analyzed a semi-discrete FSI system written in the ALE frame for stability,
proved an error estimate and performed numerical tests. Results have shown the standard optimal convergence rate of a
finite element solution.

We are aware that there are some error analysis results in the literature but those were derived using either a
fixed interface assumption [15,16] or simplified equations [17]. Although there is plenty of existing work concerning the
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Fig. 1. Fluid–structure interaction domain.

monolithic formulations of FSI problems, we found that the full error analysis is still missing, especially in the setting of ALE
formulation where all the Jacobians need to be introduced in order to handle the moving interface.

In this work we extend the analysis in [12] to a fully discretized FSI system by rigorously proving the approximation
error and stability due to time discretization. The two dynamics in the FSI system are described in different settings: the
fluid equation is given in a time-dependent Eulerian frame while the isotropic linear elastic structure is described in a time-
independent Lagrangian frame. However, the interface conditions based on the continuity allow us to obtain a monolithic
global formulation for the FSI problem, accounting for the fluid and the structure at the same time.

The paper is organized as follows. Section 2 introduces the coupled fluid–structure system with initial and boundary
conditions. The matching conditions for the two dynamics on the interface are also provided in this section. In Section 3,
we provide a monolithic weak formulation in the ALE framework. The time discretized system and corresponding analysis
are presented in Section 4. The last section presents the numerical experiments that confirm the theoretical result given in
Section 4.

2. Model description

LetΩ
f
t be themoving fluid domain at t in Rd(d = 2, 3)with the boundary Γ

f
t := Γ

f
D,0 ∪Γ

f
D ∪ΓIt , where ΓIt is themoving

interface boundary. Let Ω s be a fixed domain for the structure described in terms of a Lagrangian frame of reference. The
boundary of the structure is denoted as Γ s

t := Γ s
N ∪ Γ s

D ∪ ΓIt . We consider the system of a quasi-Newtonian flow and an
isotropic linear elastic structure.

ρf


∂u
∂t

+ u · ∇u


− ∇ · νf (|D(u)|)D(u) + ∇p = ff in Ω
f
t , (2.1)

∇ · u = 0 in Ω
f
t , (2.2)

ρs
∂2η

∂t2
− 2νs∇ · D(η) − λ∇(∇ · η) = fs in Ω s, (2.3)

where u denotes the velocity vector, p the pressure of fluid, η the displacement of the structure, ρf and ρs are the densities
of the fluid and the structure, respectively. In (2.1) and (2.3), D(u) := (∇u + ∇uT )/2 is the rate of the strain tensor, and ff
and fs are the body forces. νs and λ are the Lamé parameters defined as

νs =
E

2(1 + ν)
, λ =

νE
(1 − 2ν)(1 + ν)

, (2.4)

where E is the Young’s Modulus of the structure and ν is its Poisson ratio.
Initial and boundary conditions for u and η are given as follows:

u(x, 0) = u0 in Ω
f
0, (2.5)

η(x, 0) = η0, ηt(x, 0) = η̇0 in Ω s, (2.6)

u = uD on Γ
f
D , (2.7)

u = 0 on Γ
f
D,0, (2.8)

2νsD(η)ns + λ(∇ · η)ns = 0 on Γ s
N , (2.9)

η = 0 on Γ s
D, (2.10)

where nf and ns are the outward unit normal vectors to Ω
f
t and Ω s, respectively. The moving interface ΓIt is determined by

the displacement η at time t (Fig. 1). To simplify numerical analysis we use uD = 0 on Γ
f
D , but all our results hold for the

case of uD ≠ 0 by the standard technique [18].
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