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a b s t r a c t

A new characteristic mixed finite element method (MFEM) is proposed by combining the
method of characteristics with the new mixed variational formulation for the convection-
dominated diffusion problem. The error estimates for both the original variable u and
auxiliary variable p⃗ are derived via the properties of the integral identity and mean value
techniques. At the same time, somenumerical experiments are provided to confirmvalidity
of the theoretical analysis and excellent performance of the proposed method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Considering the following convection-dominated diffusion problem:ut + a(X, t) · ∇u − ∇ · (b(X)∇u) = f (X, t), (X, t) ∈ Ω × (0, T ),
u(X, t) = 0, (X, t) ∈ ∂Ω × (0, T ),
u(X, 0) = u0(X), X ∈ Ω,

(1.1)

where X = (x, y),Ω ⊂ R2 is a bounded convex polygonal domain with Lipschitz continuous boundary, T ∈ (0,+∞) is a
set value and u0(X) is a given smooth function. ∇ and ∇· denote the gradient and the divergence operator, respectively.

The parameters appearing in (1.1) satisfy the following assumptions [1]:

(i) a(X, t) = (a1(X, t), a2(X, t)) represents fluid velocity satisfying

∇ · a(X, t) = 0, |a(X, t)| ≤ C, ∀X ∈ Ω, (1.2)

here C is a constant;
(ii) b(X) is sufficiently smooth and there exist constants b1 and b2, such that

0 < b1 ≤ b(X) ≤ b2 < +∞, ∀X ∈ Ω. (1.3)

The convection-dominated diffusion problem is of vital importance inmany applications anddisciplines, it describes such
phenomena as the flow of heat within a moving fluid, the movement of aerosols and trace gases in the atmosphere, the in-
compressible miscible displacement in porousmedia and so on. Solving such convection-dominated diffusion problems nu-
merically is challenging, the standard finite differencemethod (FDM) or finite elementmethod (FEM) does not performwell
as it often exhibits sharp fronts and excessive nonphysical oscillations. In order to overcome these difficulties,many effective
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schemes have been proposed for this equation, such as streamline diffusionmethod [2,3], Eulerian–Lagrangianmethod [4,5],
least-squares-mixed FEM [6,7], the modified characteristics-Galerkin FEM [8,9], adaptive Galerkin-characteristic method
[10], characteristic nonconforming FEM [11–14], characteristic MFEM [15,16] and expanded characteristic MFEM [1,17],
characteristic FDM [18,19], characteristic-finite volume element method [20,21] and characteristic-mixed covolume meth-
ods [22], and the integral equation formulations based on boundary element method [23,24]. The modified characteristic
Galerkin FEM is a combination of characteristics method and standard Galerkin FEM. In this scheme, the time derivative
and the advection term are combined as a directional derivative along the characteristics, which makes the resulting ma-
trix symmetric and reduces the numerical dispersion and oscillation. In addition, it permits large time steps in a simulation
without loss of accuracy (cf. [1,8]).

Recently, a new mixed variational form for second elliptic problem was presented in [25,26]. It has a significant ad-
vantage: the LBB condition is automatically satisfied when the gradient of approximation space for the original variable is
included in approximation space for the flux variable. Subsequently, this method was further applied to parabolic problems
[27], Sobolev equations [28], convection diffusion problems [29], etc. The purpose of this article is to combine the above
new MFE scheme with the method of characteristics to establish the lowest order characteristic MFE scheme for (1.1) (the
bilinear element is used for approximating the original variable u and the auxiliary variable p⃗ is approximated by the lowest
order Nédélec element space), the total degree of freedom of this finite element pair is only 3NP which is 2NP less than
that of in [29] (NP denotes the total number of node points of the partition). By use of some properties of the interpolation
operator, the integral identity and mean value techniques, the error estimates of O(h2) order for u in L2-norm, and O(h)
order for u in H1-norm and p⃗ in L2-norm are derived, respectively.

The outline of this paper is as follows. Section 2 is devoted to introduce the MFE approximation spaces and give the
construction of the new characteristic MFE scheme. In Section 3, the convergence analysis and error estimates for both the
original variable u and the auxiliary variable p⃗ are obtained. In Section 4, some numerical examples are provided to illustrate
the effectiveness of our proposed method. Finally conclusions are given in Section 5.

2. The MFEs and the new characteristic MFE scheme

LetW k,p(Ω) be the standard Sobolev space with the norm

∥v∥W k,p(Ω) =
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and Hk(Ω) = W k,2(Ω),H0(Ω) = L2(Ω), where dX = dxdy.
Then we introduce Sobolev space involving time [30]
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Assume that the domainΩ be apolygondomainwith edges parallel to the coordinate axes, Th be a rectangular subdivision
ofΩ , which does not need to satisfy the regular condition [31].

For a given element e ∈ Th, let e = [xe − hxe , xe + hxe ] × [ye − hye , ye + hye ], where (xe, ye) is the barycenter of e and
2hxe , 2hye are the length of edges parallel to x-axis and y-axis, respectively. The four vertices d1 = (xe − hxe , ye − hye), d2 =

(xe+hxe , ye−hye), d3 = (xe+hxe , ye+hye) and d4 = (xe−hxe , ye+hye), the four edges li = didi+1(mod 4)(i = 1, 2, 3, 4), he =

maxe∈Th{hxe , hye}, h = maxe∈Th he.
Then the bilinear element spaceMh and the lowest order Nédélec element space Vh are defined as [32]

Mh =


vh : vh|e ∈ Q1,1(e), vh|∂Ω = 0


and

Vh =

w⃗h = (w1h, w2h) : w⃗h|e ∈ Q0,1(e)× Q1,0(e)


,

respectively, where Qi,j = span{xiyj}, 0 ≤ i, j ≤ 1.
We denote this finite element pair by Q1,1 − Q0,1 × Q1,0.
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