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a b s t r a c t

This paper describes the development of an exact allocation-based solution algorithm for the facility
location and capacity acquisition problem (LCAP) on a line with dense demand data. Initially, the n-
facility problem on a line is studied and formulated as a dynamic programming model in the allocation
decision space. Next, we cast this dynamic programming formulation as a two-point boundary value
problem and provide conditions for the existence and uniqueness of solutions. We derive sufficient
conditions for non-empty service regions and necessary conditions for interior facility locations. We
develop an efficient exact shooting algorithm to solve the problem as an initial value problem and
illustrate on an example. A computational study is conducted to study the effect of demand density and
other problem parameters on the solutions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The location-allocation problem (LAP) with minisum objective is
to simultaneously determine the locations of n facilities and allocate
m demand points to these facilities in such a way that total of dis-
tance between demand points and the facilities is minimized. This
problem and its variants arise in many practical settings such as retail
store location in marketing, warehouse location in logistics, and
clustering problems. The line version of this problem has practical
applications in locating non-mobile supply, storage, or servicing
facilities along transportation channels such as highways, railways or
rivers. In this paper, we consider a generalized version of the LAP,
called Location, Capacity acquisition and Allocation Problem (LCAP),
which, in addition to the fixed cost and distribution costs, accounts
for capacity acquisition costs. We present an alternative modeling
and efficient exact search procedure for the n-facility LCAP on the
line with continuous demand density. We assume that the demand
at each customer location is assigned to the closest facility.

Most of the location literature applies to problems having a
discrete set of demand points. However, modeling demand as a
continuous density function may be preferable, as in the case of
dense demand data sets or when the demand volume and loca-
tions are uncertain. A common approach to solving the LAP is to

prioritize locations over allocation decisions and assume allocation
decisions are decided subsequent to location decisions [42,43]. In
contrast, we formulate and solve the LCAP by prioritizing the
allocation decisions. This approach allows us to cast the LCAP as a
discrete optimal control problem of a non-linear system. Accord-
ingly, we formulate the allocation problem as a boundary value
problem. In our solution approach, we use an efficient shooting
algorithm which reduces the problem to an initial value problem.
Since the shooting algorithm finds only locally optimum solutions,
we develop a derivative-free and efficient global optimization
procedure to find all roots of the boundary value problem.

Our contribution is threefold. First, we introduce the continuous
demand LCAP on the line which generalizes the earlier LAPs on the
line. Second, we demonstrate that the allocation based modeling of
the continuous demand LCAP on a line lends itself to a discrete
optimal control problem formulation. This formulation differs from
the earlier dynamic programming approaches for LAP because con-
trols are now the allocation decisions. Using Pontryagin's minimum
principle, we provide conditions on the continuous demand density
for the existence and uniqueness of solutions. We also provide suf-
ficient conditions for non-empty service regions and necessary
conditions for interior facility locations. Our third contribution is the
development of an efficient global shooting algorithm to solve the
problem as an initial value problem, which, in essence, is a single-
dimensional all roots finding problem.

The remainder of this paper is organized as follows. We briefly
discuss the relevant literature in Section 2. In Section 3, we provide a
dynamic programming formulation of the problem and then
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characterize optimal solutions. An efficient exact shooting algorithm
together with an illustrative implementation is presented in Section
4. In Section 5, we present and discuss the results of a computational
study to investigate the effect of problem parameters on the solution.
Conclusions and a discussion of extensions follow in Section 6.

2. Relevant literature

The line version of LAP has practical applications in locating non-
mobile supply, storage, or servicing facilities along transportation
channels such as highways, railways or rivers. For example, Converse
[1] consider the location of sewage treatment facilities on a river basin
and Paroush and Tapiero [2] study the problem of locating a polluting
plant on a line along which a population is distributed. Another
application area is the location of mobile service units on a line.
Carrizosa et al. [3,4] showed that fixing the location of mobile servers
at the optimal location of non-mobile servers minimizes the average
distance to demand. Consequently, the problem of locating mobile
servers on a line reduces to that of non-mobile servers. Examples of
applications are the location of service units along an oil pipeline, and
the location of patrol cars or emergency vehicles in a highway where
the demand is distributed over a path [5–7]. Bortnikov et al. [51]
study the load-balancing problem in computer networks. They con-
sider the load-distance balancing problem on a line segment where
the goal is to minimize average delay incurred by a client. Other
practical applications include the optimal positioning of an idle
warehouse carousel and disk read/write heads [8–12].

While the majority of location models assume that customer
demand is concentrated at discrete locations (e.g., centroids of postal
codes), there are instances where continuously distributed demand is
suitable. For instance, when the error associated with the aggregation
of dense demand is high or the information on demand locations is
uncertain. In such cases, customers are assumed to be continuously
distributed and customer demand is modeled as a continuous density
function. The demand density function is obtained in one of two
ways, depending on data availability. When demand data (or a sub-
stitute) are not available, the analyst assumes a continuous distribu-
tion over the market region. When data are available in aggregate
form or as a sample, then spatial smoothing techniques such as kernel
density estimation or interpolation methods are applied. We refer the
readers to Sliwinski [25] and Donthu and Rust [26] for the smoothing
of discrete spatial data in market area applications.

The LCAP was first introduced by Verter and Dincer [23] with
discrete demand and facility locations on the plane. Dasci and Verter
[24] have adapted this formulation to planar location problems with
continuous demand. They have proposed a continuous approxima-
tion based modeling framework and analytical solution approach to
determine the size of the service regions. For the allocation solutions,
they recommend using a heuristic method based on bivariate step
function fitting. The proposed framework is applicable to problems
with constant or slowly varying demand density. Both the discrete
and planar versions of the LCAP differ from the classical LAP by their
incorporation of capacity acquisition costs. Murat et al. [43] have
considered the LCAP proposed in Dasci and Verter [24] with general
demand density and have proposed a local search heuristic (a stee-
pest descent algorithm) as the solution method. This method is
applicable to problems where the allocation decisions are in the form
of polygons, e.g. with Euclidean distances, fixed-charged linear
capacity acquisition costs, and uniform unit capacity acquisition cost.
Murat et al. [42] have extended the LCAP version of Murat et al. [43]
to generalized distances and capacity acquisition costs. However, the
proposed solution method is a local search method applicable only to
two-facility problems. While Verter and Dincer [23] and Dasci and
Verter [24] consider the number of facilities as a decision variable, we

consider it (and hence that of service regions) as given in the LCAP, as
in Murat et al. [42,43].

The one-dimensional LAP with discrete demand was first solved
via dynamic programming by Love [13]. This algorithm has a com-
plexity bound of O nm2

� �
. Our proposed solution approach is similar

to the dynamic programming procedure of Love [13] in that we also
prioritize the allocation decisions. The main difference is that the
demand and allocation decisions are continuous in our modeling and
solution approach. Using some developments in one-dimensional
dynamic programming, Hassin and Tamir [14] have refined the
complexity bound toO nmð Þ. Denardo et al. [15] provide an interesting
property for discrete LAP on a line with examples. This property,
called interleaving property, stipulates that whenever a facility is
removed from a solution, other facilities shift toward the location of
the one that has been removed, but not farther toward it than the
original location of the adjacent facility. Brimberg and ReVelle [16]
have provided a linear programming based solution approach for this
problem. The capacitated version of the discrete LAP on a line was
studied by Tamir [17], Mirchandani et al. [18], Brimberg and Mehrez
[19], and Eben-Chaime et al. [20]. The LAP with continuous demand
on a line is very popular in the competitive equilibrium literature
because of its simplicity. However, the focus of this literature is pri-
marily the existence and characterization of equilibrium solutions
rather than solution methods [21]. Suzuki et al. [22] have proposed an
iterative descent-based solution approach for continuous LAP on a
line. Drezner and Wesolowsky [52] studied the LAP with continuous
demand on a line where the customers select their facility based on
facility charges and transportation. In their formulation, each facility
charges customers a fixed cost plus a variable cost inversely propor-
tional to the number of customers patronizing the facility. They derive
optimality conditions, state that there are multiple local solutions, and
propose two efficient local search heuristic algorithms. Our work
differs from this study in several aspects. First, we propose a con-
tinuous demand LCAP which is more general, e.g. location dependent
fixed, capacity acquisition and distribution costs and general forms of
(dis-)economies of scale. Second, our solution approach is exact and
finds the globally optimum solution(s) whereas methods in Drezner
and Wesolowsky [52] are heuristics. Hence, our approach is the first
exact method for continuous LAP on a line and complements the
exact approaches for discrete demand [13,16–20]. Our objective is to
minimize the total cost to the manufacturer, whereas Drezner and
Wesolowsky [52] minimize cost for customers. Lastly, we provide
sufficient conditions for non-empty service segments and necessary
conditions for interior facility locations.

3. Model

We study the LCAP problem of partitioning a market region on the
line into service regions and determining their facility locations such
that the total fixed cost, distribution costs, and capacity acquisition
costs are minimized. We assume that the fixed costs are location
dependent. Further, the capacities of the facilities are assumed to be
unconstrained and can be increased at a cost. This assumption of soft
capacity is not restrictive as long as the unit capacity acquisition cost
function is kept general. A direct result of this assumption is that
demand at each customer location is assigned to only one facility
(single sourcing). The single sourcing assumption not only makes the
analysis easier but is also the preferred method in practice.

We now provide some definitions and notation required for our
model on the line. The market MDRþ is defined as a bounded
line segment with a length of M. Without loss of generality, we
assume that 0AM. Every point x AM has a demand density
expressed as D(x) which is assumed to be continuous. There are n
facilities to be located and the location of facility i is represented
by xi AM. Each facility i serves the customer demand in a single
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