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a b s t r a c t

In revenue management, the profitability of the inventory and pricing decisions rests on the accuracy of
demand forecasts. However, whenever a product is no longer available, true demand may differ from
registered bookings, thus inducing a negative bias in the estimation figures, as well as an artificial
increase in demand for substitute products. In order to address these issues, we propose an original
Mixed Integer Nonlinear Program (MINLP) to estimate product utilities as well as capturing seasonal
effects. This behavioral model solely rests on daily registered bookings and product availabilities. Its
outputs are the product utilities and daily potential demands, together with the expected demand of
each product within any given time interval. Those are obtained via a tailored algorithm that
outperforms two well-known generic software for global optimization.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

According to Cross [7], Revenue Management (RM) is the research
area that focuses on the study of disciplined tactics for making
product availability and pricing decisions, with the aim of maximiz-
ing revenue growth. In the service industry, this goal can only be
achieved through accurate demand forecasting, which must take into
account the volatility of product availabilities over the booking
horizon. Clearly, registered bookings alone are not sufficient to depict
the true demand. Indeed, as soon as a product reaches its capacity
(booking limit), true demand is constrained (censored) and cannot be
observed. Upcoming customers can then either switch to a higher
fare product (buy-up), switch to a lower fare product (buy-down), or
renege (spill). According to Weatherford and Belobaba [30], ignoring
the data censorship phenomenon can lead to demand underestima-
tion ranging from 12.5% to 25%, and negatively affect revenue by
1–3%, a significant amount for major rail or airline operators.

Although unconstraining techniques may have a big impact on
the success of revenue management systems, this topic has not been
paid much attention in the literature. In general, two frameworks
have been considered to deal with the issue: statistics and optimiza-
tion. In this paper, we tackle the problem of demand modeling by the
use of optimization techniques. However, first, in this section, we

present the challenges and rewards of using statistical methods for
uncensoring demand.

Based on the literature, statistical techniques such as time series,
exponential smoothing, or linear regression have mostly been con-
sidered in this context. All of these are able to include seasonal effects
within their demand forecasts. Zeni [31] and Queenan et al. [21] have
provided a comprehensive study of these methods, and have com-
pared their respective impact on revenue. Their main drawback is
that they cannot respond to sudden changes in customer behavior
when a product becomes unavailable (see [24,15,20,29,14]). On the
other hand, there are many researchers who have addressed the
problem from optimization point of view [9,13,18,28]. Actually,
authors such as van Ryzin [23] have claimed that revenue manage-
ment systems should focus on customer behavior and choice prob-
abilities, rather than blindly estimating demand from historical
booking data.

Choice-based models were introduced by Andersson [1], and
analyzed by Talluri and van Ryzin [26] and Vulcano et al. [27] within
the framework of discrete choice theory. In the latter two works, the
parameters of the model have been estimated by maximum-
likelihood techniques. In another research, Ratliff et al. [22] have
integrated historical demand data within a multi-flight heuristic
procedure. Also, Vulcano et al. [28] have applied customer choice
models to the estimation of product primary demand (first-choice
demand). In all the above-mentioned optimization models, a para-
metric method of estimation (Expectation–Maximization, or EM in
short) is used to estimate the parameters of the choice model, under
demand independence assumptions. Although the approaches have
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been used for many years with some success, several issues still
need to be addressed:

� Demand across fare products is not independent. Dealing with
dependency yields a complex parameter estimation process
that has been considered and tested by Stefanescu [25] on
small instances.

� As the proportion of censored demand in historical data grows,
the accuracy of the standard estimation methods decreases
(see [26,28,10]).

� Several statistical methods fail to accurately capture seasonal
effects.

� Choice probabilities should enter the optimization process as
variables, not as parameters to be estimated. Indeed, these
probabilities depend on the set of products available within
each time period.

All these issues have motivated us to develop a non-parametric and
distribution-free estimation procedure that, based upon historical
bookings, takes explicitly into account the set of available products.
The contribution of this work is twofold. First, we formulate a model
for minimizing the difference between estimated and registered book-
ings. In order to obtain a realistic representation of customer behavior,
cross-temporal utilities enter the model as variables, and seasonal
effects are captured by classifying daily demand flows into a predefined
number of clusters. Next, we formulate the problem as a MINLP
(mixed-integer nonlinear program) , for which we develop a semi-
global optimization algorithm.

We close this introductory section with an outline of the paper's
structure. Following the description of the problem, together with its
underlying assumptions and mathematical formulation (Section 2), we
provide a detailed description of the solution algorithm, including the
node selection strategy and the valid inequalities used for enhancing
the branch-and-bound framework (Section 3). Computational results
on synthetic data are analyzed in Section 4, while the concluding
Section 5 opens avenues for future research.

2. Problem formulation

To illustrate demand censorship, let us consider the two-
product example involving the data displayed in Table 1. As soon
as demand for product A exceeds its booking limit 35, which it
does since true demand is equal to 40, the data collection system
stops counting the number of upcoming customers. As a result, the
real demand for A is censored and may exceed 35. In the present
case, one A-customer switched to B, while the other 4 reneged.

The main objective of our mathematical model is to minimize
the difference between temporal registered bookings and their
estimates. Let us introduce its main elements: a product i corre-
sponds to a fare class offered at a given period,1 and is endowed
with a utility ui. The set of products available at a given period j is
the choice set Sj. A cluster c denotes the set of periods that share
common features based on the demand flow, such as weekdays,
weekends, and holidays. Each daily potential demand dj is asso-
ciated with a unique cluster. For given utilities ui and choice sets Sj
the choice probability pij of selecting product i on day j is computed
according to the multinomial logit (MNL) formula [16]

pijðSj;uiÞ ¼
expðuiÞ=

0
@ P

kA Sj

expðukÞþexpðu0Þ
1
A if iASj

0 otherwise;

8>><
>>: ð1Þ

where u0 represents the utility of the no-choice option.

For a given time horizon, d1; d2;…; dj J j and a set of products I,
we wish to minimize the discrepancy eij between the expected
bookings wij of each available product i at a given day j and its
associated observed registered booking Oij, thus simultaneously
capturing seasonal effects and customer behavior. We will there-
fore have achieved the three following goals:

� external segmentation (classification of days within clusters);
� estimation of daily potential demand;
� estimation of product utilities.

A summary of the notation used in the model is displayed
in Tables 2 and 3.

The objective of the model is to minimize the difference between
estimated and observed reservations, through the estimation of
potential demand, product utilities, and cluster membership. This is
achieved by solving the following mathematical model:

MINLP : min
δc ;u;z;dj

X
jA J

X
iA Sj

ðpijðSj;uiÞdjAij�OijÞ2 ð2Þ

Table 1
Demand censorship.

Product A B

Availability status Yes Yes
Observed demand 35 5
Booking limit 35 6
Real demand 40 4

Table 2
Summary of notations (MINLP).

Sets
Product iA I¼ f1;…; j I j g

Day jA J ¼ f1;…; j J j g
Cluster cAC ¼ f1;…; jC j g

Choice set Sj , set of products available on day j

Parameters
Oij Observed bookings for product iA I on day jA J
Aij Availability status of product iA I on day jA J

Variables
dj Daily potential demand (integer)
pij Probability of selecting product iA I on day jA J
zjc Cluster membership variable (binary)
ui Utility of product i
δc Potential demand of cluster c

Table 3
Additional summary of notations (RELAX).

Parameters

RU
c

Upper bound on potential demand for cluster cAC

RL
c

Lower bound on potential demand for cluster cAC

DU
j

Upper bound on potential demand on day jA J

DL
j

Lower bound on potential demand on day jA J

PU
ij

Upper bound on choice probability for product iA I on day jA J

PL
ij

Lower bound on choice probability of product iA I on day jA J

Variables
eij Difference between estimated demand wij and observed bookings Oij

wij Expected demand for product iA I on day jA J

dNjc Normalized daily potential demand A ½0;1�
rNc Normalized potential demand for each cluster A ½0;1�

1 Throughout, the terms ‘time period’ and ‘day’ are used interchangeably.
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