
Approximate linear programming for networks: Average cost bounds

Michael H. Veatch n

Department of Mathematics, Gordon College, Wenham, MA 01984, USA

a r t i c l e i n f o

Available online 1 May 2015

Keywords:
Queueing network
Approximate dynamic programming
Linear programming

a b s t r a c t

This paper uses approximate linear programming (ALP) to compute average cost bounds for queueing network
control problems. Like most approximate dynamic programming (ADP) methods, ALP approximates the
differential cost by a linear form. New types of approximating functions are identified that offer more accuracy
than previous ALP studies or other performance bound methods. The structure of the infinite constraint set is
exploited to reduce it to a more manageable set. When needed, constraint sampling and truncation methods
are also developed. Numerical experiments show that the LPs using quadratic approximating functions can be
easily solved on examples with up to 17 buffers. Using additional functions reduced the error to 1–5% at the
cost of larger LPs. These ALPs were solved for systems with up to 6–11 buffers, depending on the functions
used. The method computes bounds much faster than value iteration. It also gives some insights into policies.
The ALPs do not scale to very large problems, but they offer more accurate bounds than other methods and the
simplicity of just solving an LP.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Queueing networks are a common modeling framework for
manufacturing, computer, and communication systems. Even
under the simple assumptions of exponentially distributed service
and interarrival times, a multiclass network (MQNET) structure,
linear holding costs, and sequencing and routing control, the
optimal control problem is NP-hard so that we cannot hope to
solve large instances exactly [1]. In fact, only examples with a
handful of buffers have been solved, particularly in heavy traffic.
This paper develops approximate linear programming (ALP) algo-
rithms for these problems. A sequence of lower bounds on average
cost are computed by solving LPs with an increasing number of
variables. Policies obtained from the ALP are also considered.

A practical use of the lower bounds is benchmarking the many
heuristic policies that have been proposed. To be useful for bench-
marking, the bounds must be within a few percent of optimal. The
candidate policy can then be simulated to estimate its average cost. If
the difference between the lower bound and candidate policy is small,
we may conclude that the policy is close to optimal. Available bounds
[2,3] are generally not that accurate. Other justifications of heuristic
policies such as stability or showing asymptotic optimality under
heavy traffic or fluid scaling do not measure suboptimality. Motivated
by the need for benchmarking, we develop ALP bounds that are more

accurate than prior bounds, at the expense of more computation, and
are computable for moderate-sized networks.

The first contribution of this paper is identifying good approximat-
ing functions for the differential cost. All approximate dynamic
programming (ADP) methods must choose a compact approximation
architecture, which is crucial to the accuracy of the method. For
queueing networks, Refs. [4,5] use quadratic and cubic approxima-
tions, Ref. [6] uses functions of one variable, and Ref. [7] uses linear
functions. In our tests on average cost problems, these architectures
often gave inaccurate lower bounds. Various analyses and numerical
testing led to the following types of functions: (i) quadratics, (ii)
exponential decay, (iii) piece-wise quadratics, with the regions taken
from the associated fluid model, (iv) rationals, (v) piece-wise quad-
ratics on a variable grid, and (vi) functions of one or two variables.
Compared to earlier studies and other functions we tested, these
functions offer a better trade-off between accuracy and the number of
functions. By judiciously adding some of them to the ALP, errors of 1–
5% were achieved on all test problems where optimality could be
computed. The number of functions needed to achieve these small
errors appears to be exponential in the number of buffers, which is to
be expected given the difficulty of the problem. In comparison, the
traditional method of using dynamic programming on a truncated
state space requires orders of magnitude more states than the ALP
method requires functions for the same accuracy. Thus, the approx-
imation architectures are more compact than the original problem, but
not scalable to large systems.

Several factors influenced the choice of approximating functions.
Queueing network problems suffer from two of the three “curses of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2015.04.014
0305-0548/& 2015 Elsevier Ltd. All rights reserved.

n Tel.: þ1 978 867 4375.
E-mail address: mike.veatch@gordon.edu

Computers & Operations Research 63 (2015) 32–45

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.04.014
http://dx.doi.org/10.1016/j.cor.2015.04.014
http://dx.doi.org/10.1016/j.cor.2015.04.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.04.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.04.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.04.014&domain=pdf
mailto:mike.veatch@gordon.edu
http://dx.doi.org/10.1016/j.cor.2015.04.014
http://dx.doi.org/10.1016/j.cor.2015.04.014


dimensionality” described in [8]: large state spaces and a large number
of actions. The number of transitions, however, is small, making the
resulting LP sparse for certain approximating functions. The functions
(i), (ii), (iii), and (vi) are also appealing because they allow some degree
of constraint reduction, described below. Quadratic functions, and
particularly the piece-wise quadratics (iii), are motivated by consider-
ing the associated fluid model.

The second contribution of this paper addresses solving the ALPs,
which contain one variable for each approximating function and one
constraint for each state-action pair. To create an LP with a manage-
able number of constraints, several authors use constraint sampling.
Although this method has theoretical support [9] and is used on the
game of tetris in [7], it has serious limitations in our numerical tests.
As an alternative, we provide newmethods of reducing the number of
constraints that exploit their structure. The number of reduced
constraints varies, but is always proportional to the number of actions,
which for many networks is exponential in the number of buffers. To
accommodate general functions and larger problems, we also use
constraint sampling and hybrid approaches.

We also briefly address the policies associated with the differ-
ential cost approximations. We report some cases where the ALP
gives a useful policy and relate the approximation architecture to
the form of policy obtained. A final contribution is that we relate
error in the differential cost approximation, as measured by
expected Bellman error, to the accuracy of the ALP average cost.

The method applies to a broad class of queueing control
problems, modeled as Markov decision processes (MDPs). Tests
included problems with reentrant flow, arrival routing, probabil-
istic routing, and cross-trained servers. Accuracy was tested on
networks with up to six buffers, where the optimal solution could
be computed. ALPs were also solved for an 11-buffer manufactur-
ing network and series lines with up to 17 buffers. These tests used
software that does not include all of the constraint reduction
methods. Significant speed-ups could be achieved by implement-
ing more constraint reduction or using customized LP algorithms
as in [7]. However, our software has the advantage of being very
general and using commercial LP solvers. The general approach
should be useful for other MDPs on high-dimensional state spaces.

An average cost objective is used for several reasons. In many
applications, a long time horizon is more realistic and avoids
having to choose a discount rate. Furthermore, the optimality
equations can be written using difference operators, facilitating
constraint reduction. The average cost problem can also be related
to the fluid model, giving some guidance in the choice of
approximating functions.

The ALP approach was originally proposed in [10]. For discounted
MDPs on a finite state space, Refs. [11,7] provide an error bound for
the ALP value function. In particular, a suitable weighted norm of the
error is bounded by the minimum of this error norm over the space
of approximating functions, multiplied by a constant that does not
depend on problem size. Similar bounds are given on performance of
the policy implied by the ALP value function. Constraint sampling is
shown to be probabilistically accurate in [9]. Bounds for average cost
problems are given in [4,12,13]. In [14], column generation methods
are used to solve average cost ALPs more efficiently. Constraint
reduction for quadratic and piece-wise quadratic functions is used
in [15,16]. They consider a different quadratic on each set of states
defined by which buffers are empty. We extend this method to
consider the piece-wise quadratic functions (iii), which are defined
on affine sets of states. We also develop a new method of reducing
constraints for certain exponential functions. Our constraint reduc-
tion for (vi) is based on the notion of factored value functions and
MDPs, introduced in [17]. Constraint reduction for factored problems
is used in [18–20].

Given a set of approximating functions, many ADP methods
have been proposed for approximating the value function as a

linear combination of these functions. However, simulation-based
methods, such as least squares temporal difference, tend to require
customization to the specific problem. See [21, Chapter 6] for a
survey and [8] for detailed coverage. We focus on the ALP
approach because of the approximation guarantees described
above and the simplicity of just solving an LP. The smoothed ALP
method of [7] seeks to improve the accuracy of the ALP with
discounted cost through a Lagrangian relaxation. Promising results
are given for a small queueing network, but only linear approx-
imating functions are tested. The information relaxation, or
martingale duality, approach [22,23] has been applied to inventory
control and option pricing. It solves a deterministic version of the
problem, where future random events are known, for repeated
simulation paths. The method requires an estimate of the value
function. Optimizing over all value functions in an approximation
architecture leads to a convex “outer” optimization problem
[24,25]. As noted in the last reference, this dual method dominates
the ALP bound (for discounted cost problems), however, it is only
tractable when the deterministic inner problem has a simple
structure, which is not true of queueing networks.

The rest of this paper is organized as follows. Section 2 defines the
MQNET sequencing problem and the associated fluid control pro-
blem and Section 3 describes average cost ALPs. In Section 4 the
various approximating functions are introduced. Constraint reduction
for some of these functions is presented in Section 5. Numerical
results are presented in Section 6, and Section 7 concludes.

2. Open MQNET sequencing

In this section we describe the standard MQNET model and the
fluid model associated with it. The results in Sections 3 and 5 can
be extended to more general stochastic processing networks; the
examples in Section 6 include the additional features of arrival
routing and servers with overlapping job classes. There are n job
classes and m resources, or stations, each of which serves one or
more classes. Associated with each class is a buffer in which jobs
wait for processing. Let xi(t) be the number of class i jobs at time t,
including any that are being processed. Class i jobs are served by
station σðiÞ. The topology of the network is described by the
routing matrix P ¼ ½pij�, where pij is the probability that a job
finishing service at class i will be routed to class j, independent of
all other history, and the m� n constituency matrix with entries
Cji ¼ 1 if station j serves class i and Cji ¼ 0 otherwise. If routing is
deterministic, then pi;sðiÞ ¼ 1, where s(i) is the successor of class i. If,
in addition, routes do not merge then either ppðiÞ;i ¼ 1, where p(i) is
the unique predecessor of class i, or i has no predecessor.

Exogenous arrivals occur at one or more classes according to
independent Poisson processes with rate αi in class i. Processing
times are assumed to be independently exponentially distributed
with mean mi ¼ 1=μi in class i. To create an open MQNET, the
routing matrix P is assumed to be transient, i.e., IþPþP2þ⋯ is
convergent. As a result, there will be a unique solution to the
traffic equation

λ¼ αþP0λ

given by

λ¼ ðI�P0Þ�1α:

Here λi is the effective arrival rate to class i, including exogenous
arrivals and routing from other classes, and vectors are formed in
the usual way. The traffic intensity is given by

ρ¼ C diagðm1;…;mnÞλ

that is, ρj is the traffic intensity at station j. Stability requires that ρo1.

M.H. Veatch / Computers & Operations Research 63 (2015) 32–45 33



Download English Version:

https://daneshyari.com/en/article/472952

Download Persian Version:

https://daneshyari.com/article/472952

Daneshyari.com

https://daneshyari.com/en/article/472952
https://daneshyari.com/article/472952
https://daneshyari.com

