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a b s t r a c t

We address the one-to-one multi-commodity pickup and delivery traveling salesman problem (m-PDTSP)
which is a generalization of the TSP and arises in several transportation and logistics applications. The
objective is to find a minimum-cost directed Hamiltonian path which starts and ends at given depot nodes
and such that the demand of each given commodity is transported from the associated source to its
destination and the vehicle capacity is never exceeded. In contrast, the many-to-many one-commodity
pickup and delivery traveling salesman problem (1-PDTSP) just considers a single commodity and each node
can be a source or target for units of this commodity. We show that the m-PDTSP is equivalent to the 1-
PDTSP with additional precedence constraints defined by the source–destination pairs for each commodity
and explore several models based on this equivalence. In particular, we consider layered graph models for
the capacity constraints and introduce new valid inequalities for the precedence relations. Especially for
tightly capacitated instances with a large number of commodities our branch-and-cut algorithms outper-
form the existing approaches. For the uncapacitated m-PDTSP (which is known as the sequential ordering
problem) we are able to solve to optimality several open instances from the TSPLIB and SOPLIB.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we propose a new approach for the one-to-one
multi-commodity pickup and delivery traveling salesman problem
(m-PDTSP) introduced by Hernández-Pérez and Salazar-González
[23]. The problem arises in several transportation and logistics
applications. The m-PDTSP generalizes the well known travelling
salesman problem (TSP) as well as two other variants which in
turn also generalize the TSP. To better contextualize the m-PDTSP
we will start by introducing briefly the other three variants,
pointing out relations between the four problems as well as
stating one of the main results of this paper.

We first consider the TSP [24], or more precisely the asym-
metric version since all the problems discussed here are defined in
a directed graph G¼ ðV ;AÞ. For each arc ði; jÞAA, a travel distance

(or cost) cij of going from i to j is given. The objective is to find a
minimum cost Hamiltonian tour. Many formulations have been
presented for this problem (see, for instance [30], as probably the
latest such reference) and we also refer the reader to the well
known formulation by Dantzig et al. [9] (DFJ) that will be stated in
Section 3 as a subformulation for all the formulations presented
and discussed in this paper.

The first generalizationwe consider is the precedence constrained
TSP (PCTSP) where a set K of pairs of nodes ðsk; dkÞ; 8kAK , is given
as an input of the problem. In this variant we consider a special node,
node 0 as a depot and where the tour starts and ends. As before, the
objective is to find a minimum cost Hamiltonian circuit, but now we
have the additional constraint that for each kAK , node sk must
precede node dk in the tour. We refer the reader to the papers by
Balas et al. [6], Ascheuer et al. [5], and Gouveia and Pesneau [16]. Cut-
like inequalities specific for the precedence case and generalizing the
well known cut inequalities that arise in the DFJ formulation have
been proposed in the first paper. These sets of constraints will be
referred to in Section 4. We also observe that this problem is often
defined as searching for a minimum cost Hamiltonian path between
a source node 0 and destination node nþ1. The two variants are
obviously equivalent. Also, the PCTSP is known as the sequential
ordering problem (SOP). From now on, we will keep the Hamiltonian

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2015.04.008
0305-0548/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author at: Mobility Department, Austrian Institute of Technol-
ogy, Vienna, Austria.

E-mail addresses: legouveia@fc.ul.pt (L. Gouveia),
mario.ruthmair@ait.ac.at (M. Ruthmair).

1 This work is supported by National Funding from FCT - Fundação para a
Ciência e a Tecnologia, under the Project: PEst-OE/MAT/UI0152.

2 This work is supported by the Vienna Science and Technology Fund (WWTF)
through Project ICT10-027.

Computers & Operations Research 63 (2015) 56–71

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.04.008
http://dx.doi.org/10.1016/j.cor.2015.04.008
http://dx.doi.org/10.1016/j.cor.2015.04.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.04.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.04.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.04.008&domain=pdf
mailto:legouveia@fc.ul.pt
mailto:mario.ruthmair@ait.ac.at
http://dx.doi.org/10.1016/j.cor.2015.04.008
http://dx.doi.org/10.1016/j.cor.2015.04.008


path alternative for describing the subsequent variants including the
problem studied in this paper.

A second variant of the TSP is the so-called many-to-many one-
commodity pickup and delivery traveling salesman problem (1-
PDTSP) and has been introduced by Hernández-Pérez and Salazar-
González [20]. In this problem and as stated before, we consider a
node set V with a start and an end depot 0 and nþ1, respectively,
and the set of customers Vc ¼ f1;…;ng. We also consider a vehicle of
capacity Q and a single commodity, and each node can be a source or
target for units of this commodity. Values ρj; 8 jAV , represent the
customer demands: nodes with ρj40 and ρjo0 are denoted as
pickup and delivery customers, respectively. Nodes with ρj ¼ 0 also
need to be visited without changing the vehicle load. Again, we want
to find a Hamiltonian path from 0 to nþ1 satisfying all customer
demands and the given vehicle capacity Q. It is NP-hard to find a
feasible solution for the 1-PDTSP as shown by Hernández-Pérez and
Salazar-González [20]. The papers by Hernández-Pérez and Salazar-
González [21,22] present several models and valid inequalities for the
1-PDTSP and branch-and-cut algorithms to solve it. One of these
models will be reviewed in Section 4. Clearly, if one ignores the
vehicle capacity, the 1-PDTSP reduces to the TSP.

So far, we have described two variants that generalize the TSP.
As mentioned before, in this paper we study a new approach for
the m-PDTSP. This problem can also be viewed as a generalization
of the SOP and the 1-PDTSP.

In the m-PDTSP there are m commodities K ¼ f1;…;mg, each
kAK associated with a demand qk, a source skAV=fnþ1g, and a
destination dkAV=f0g. We assume skadk and qk40. A customer j
can be the source of several commodities and the destination of
other commodities. As in the 1-PDTSP we also consider a vehicle
capacity Q40. We assume that qkrQ for all kAK . The objective is
to find a minimum cost Hamiltonian path between nodes 0 and
nþ1, such that (i) for each commodity kAK source sk is visited
before destination dk, (ii) qk units are transported from sk to dk, and
(iii) the vehicle capacity is an upper bound of the vehicle load for
each arc on the path from 0 to nþ1.

As pointed out by Hernández-Pérez and Salazar-González [23]
the m-PDTSP generalizes the 1-PDTSP. We simply aggregate the
different flows into a single one. The customer demands of the
equivalent 1-PDTSP are defined by the load changes when the
vehicle visits a customer in the m-PDTSP. Again, and as also
pointed out in Hernández-Pérez and Salazar-González [23], if
one ignores the vehicle capacity in the m-PDTSP, one obtains the
SOP since the precedence between source and destination for each
commodity must be maintained.

The m-PDTSP is NP-hard since it generalizes all the variants
described here which are also known to be NP-hard. Hernández-
Pérez and Salazar-González [23] present two solution approaches,
both based on Benders decomposition of a path and a multi-
commodity flow model. The multi-commodity flow model will be
revisited in Section 3. Their branch-and-cut algorithms are based on
models in the natural variable space, i.e., only use binary variables for
arcs A. These approaches usually achieve excellent results in terms of
solution runtime for loosely constrained problem instances, i.e., when
only a few commodities have to be considered or the given vehicle
capacity is large in relation to the demands. In these cases only a few
violated inequalities have to be added within the cutting plane phase.
Additionally, the reduced size of the initial model makes it possible to
quickly solve the corresponding linear programming (LP) relaxation.
However, when considering problem instances with many commod-
ities and/or a tight vehicle capacity several weaknesses of these
approaches show up, namely that the basic model provides only a
quite weak LP relaxation value leading to a large number of branch-
and-bound nodes and making it necessary to add many violated
inequalities. Rodríguez-Martín and Salazar-González [31] also propose
several heuristic approaches for the m-PDTSP to obtain high-quality

solutions for larger instances for which exact approaches cannot
obtain satisfying results within reasonable time. They present a
simple nearest neighbor heuristic to construct a solution followed
by an improvement phase based on 2-opt, 3-opt, and restricted mixed
integer programming neighborhood structures. We conclude this
literature review by pointing to the overview on further pickup and
delivery problems given in Berbeglia et al. [7].

The models in this paper are mostly based on a new result
stating that the m-PDTSP is equivalent to the 1-PDTSP with
additional precedence constraints defined by the origin–destina-
tion pairs for each commodity. That is, in a loose sense the m-
PDTSP combines together the two previous variants. The advan-
tage of using this relation to model the m-PDTSP is that we are
able to model the capacity constraints just by considering a single
commodity and this helps considerably in running times. The
precedence relations are ensured separately by adding valid
inequalities from the SOP, see Balas et al. [6] and Ascheuer et al.
[5]. We also introduce new inequalities based on sequences and
logical implications of precedence relations which are able to
further close the LP gaps, especially for instances with a large
number of precedence constraints.

Also, we present alternative ways to model the capacity
constraints based on load-dependent layered graphs which
improve the LP bounds for tight capacities. In particular we
consider a formulation based on a 3-dimensional layered graph
that combines position and load together and leads to tighter
bounds at the cost of a larger sized model.

Our branch-and-cut algorithm to solve the m-PDTSP consists of
several preprocessing methods, primal heuristics, and separation
routines for the SOP inequalities. Especially for tightly capacitated
instances with a large number of commodities we are able to
outperform the approaches by Hernández-Pérez and Salazar-
González [23]. In our experiments, we also consider the uncapa-
citated variant of the m-PDTSP, i.e., the SOP. Here, an adapted
variant of our branch-and-cut algorithm is able to solve to
optimality several open instances from the TSPLIB and SOPLIB.

The remainder of the paper is structured as follows: In Section 2
we present reduction and preprocessing techniques for them-PDTSP,
Section 3 revises existing models, Section 4 discusses the transforma-
tion to a single-commodity problem, Section 5 introduces layered
graph models for the capacity constraints, Section 6 describes our
branch-and-cut algorithms, Section 7 shows experimental results,
and Section 8 concludes the paper.

2. Preprocessing

In this section we discuss some problem reductions and relevant
problem properties which will be used to reduce and strengthen the
models discussed in this paper. Additionally, these tests and proper-
ties may lead to an early detection of infeasibility of an instance.

2.1. Commodities

A commodity kAK is called transitive if there exist commod-
ities k1; k2AK=fkg with sk1 ¼ sk; dk1 ¼ sk2 ; dk2 ¼ dk. It can be easily
seen that the set of feasible solutions is not modified if a transitive
commodity is removed from set K and the demands of the
corresponding commodities k1 and k2 are appropriately modified,
i.e., q0k1 ¼ qk1 þqk and q0k2 ¼ qk2 þqk. We perform this reduction step
for all transitive commodities.

2.2. Precedence relations

The source–destination pairs ðsk; dkÞ; 8kAK , induce an acyclic
precedence graph P ¼ ðV ;RÞ with R being the transitive closure of
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