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a b s t r a c t

The Double Traveling Salesman Problem with Multiple Stacks (DTSPMS) is a one-to-one pickup-and-
delivery single-vehicle routing problem with backhaul deliveries. The vehicle carries a container divided
into stacks of fixed height, each following a Last-In-First-Out policy, and the aim is to perform pickups
and deliveries by minimizing the total routing cost and ensuring a feasible loading/unloading of the
vehicle.

A realistic generalization of the DTSPMS arises when a single vehicle is not enough to collect all
products, and therefore multiple, and possibly heterogeneous vehicles are needed to perform the
transportation operations. This paper introduces and formulates this generalization, that we refer as the
Double Vehicle Routing Problem with Multiple Stacks. It proposes three models, the first one based on a
three-index formulation and solved by a branch-and-cut algorithm, and the other two based on two set
partitioning formulations using different families of columns and solved by a branch-and-price and a
branch-and-price-and-cut algorithm, respectively.

The performance of these algorithms has been studied on a wide family of benchmark test instances,
observing that, although the branch-and-cut algorithm shows a better performance on instances with a
small number of vehicles, the performance of the branch-and-price and the branch-and-price-and-cut
algorithms improves as the number of vehicles grows. Additionally, the first set partitioning formulation
yields tighter lower bounds, but the second formulation, because of its simplicity, provides better
convergence properties, solving instances with up to fifty vertices to proven optimality.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The Double Traveling Salesman Problemwith Multiple Stacks (DTSPMS)
is a one-to-one pickup-and-delivery single-vehicle routing problem (see,
e.g., Berbeglia et al. [1] and Cordeau et al. [2]), in which a single vehicle
performs all pickup operations in a first region, by loading products one
at a time as they are collected, and then is transferred to a second region
where it performs all the delivery operations. The problem arises in
contexts where the pickup and delivery regions are widely separated,
and the way the collected products are loaded into the vehicle may
affect the possible delivery sequence.

Formally, the pickup and the delivery vertices, in addition to a
depot in each region, are known in advance. A routing cost is
associated with each pair of vertices in each region. The transpor-
tation cost between the two regions is fixed and, therefore, not

considered as part of the optimization problem. Each product is
associated exactly and unambiguously with a pickup vertex in the
pickup region and with a delivery vertex in the delivery region. All
products have identical shape and size, and the vehicle has a
loading space, that is, a container, divided into stacks of fixed
height. The loading operations follow a Last-In-First-Out (LIFO)
policy on each stack. Due to the fact that each vehicle carries a
single container, in the following we will use the terms vehicle and
container interchangeably.

The DTSPMS requires collecting all products in the pickup
region following a Hamiltonian cycle that starts at the pickup
depot, and then delivering these products in the delivery region
with a second Hamiltonian cycle starting at the delivery depot. The
aim is to minimize the total routing cost while ensuring that there
exists a feasible loading plan of the products into the vehicle, that
is, the collected products may be loaded into the vehicle without
exceeding the stacks height and may be unloaded following the
LIFO policy on each stack. Fig. 1 depicts a DTSPMS solution on an
instance involving 16 products (hence, containing 32 customers
and 2 depots). Each product is associated with a pickup customer
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and a delivery customer (product 1 is associated with pickup
customer 1 and delivery customer 1, product 2 with pickup
customer 2 and delivery customer 2, and so on), and the container
is divided into 2 stacks of height 8.

The DTSPMS combines two instances of the well-known
Traveling Salesman Problem (TSP), one for the pickup region and
one for the delivery region, with the combinatorial problem of
feasibly assigning the products to the stacks of the container. The
DTSPMS was introduced by Pertersen and Madsen [3] in the
context of a real-world application on multimodal transport,
where a 40-foot container (configured as 3 stacks of height 11)
is used to transport up to 33 pallets from a set of pickup customers
to a set of delivery customers. After proposing a mathematical
formulation, Pertersen and Madsen [3] presented a simulated
annealing heuristic algorithm and tested it on a set of instances
that have now become a widely used benchmark. Since this
seminal paper there has been a growing interest in exact algo-
rithms for the DTSPMS: Lusby et al. [4] proposed an exact solution
method based on matching the k-best TSP tours on each of the
separate pickup and delivery regions; Carrabs et al. [5] developed
a branch-and-bound algorithm to solve the particular case in
which the vehicle has exactly two stacks; Petersen et al. [6]
studied different formulations and proposed a branch-and-cut
algorithm based on an infeasible path model; this model was later
improved by Alba Martínez et al. [7] by means of new valid
inequalities and algorithmic refinements. Heuristic algorithms
have been recently proposed by Felipe et al. [8–10], who imple-
mented a variable neighborhood search, and by Côté et al. [11],
who proposed a large neighborhood search.

In this paper we consider the realistic generalization of the
DTSPMS where multiple containers are used, thus giving rise to
multiple routes to perform the collections and the deliveries.
Because of its similarity with the Vehicle Routing Problem (VRP),
see, e.g., Toth and Vigo [12], we call this generalization the Double
Vehicle Routing Problem with Multiple Stacks (DVRPMS).

The DVRPMS is motivated by the case where a single container
is not enough to manage all products. Apart from this situation,
even if one vehicle was enough to transport all products, the use of
multiple containers is interesting because it increases the flex-
ibility of the loading process and can thus lead to a possible cost
reduction. This is known in applications of the multiple traveling
salesman problem, such as mission planning in the context of
autonomous mobile robots or crew scheduling for carrying cash
among different branches of a bank (see, e.g., Bektas [13]), where
the presence of side constraints may make more profitable the use
of several vehicles instead of just one.

Figs. 2 and 3 show two DVRPMS solutions for the situation
already depicted in Fig. 1. Fig. 2 shows a solution using four
containers, each consisting of two stacks of height two. In this

particular case the DVRPMS solution consists of four pairs of tours
on the pickup and delivery regions, starting and finishing in their
respective depots, allowing feasible vehicle loading plans, so that
each tour in the pickup set has its counterpart in the delivery set.
In our study we consider the general case in which the fleet is
possibly composed of heterogeneous vehicles having different
shapes. An example is shown in Fig. 3, where the solution consists
of three pairs of tours associated with three containers of size
2�4, 1�4, and 2�2, respectively.

This paper formulates the DVRPMS by proposing first a three-
index formulation, and then two set partitioning formulations
obtained from a Dantzig–Wolfe decomposition of the former
formulation. The two set partitioning formulations are meant to
be optimized by column generation. They contain columns having
different structure. In the first formulation, each column repre-
sents a route collecting some products and delivering them to
their respective demanding customers. That is, each column
includes a pairing between pickup and delivery customers. This
approach follows previous works on one-to-one pickup-and-
delivery problems (see, e.g., Ropke and Cordeau [14]). In the
second formulation, instead, we independently define columns
for the pickup and for the delivery regions. Consequently, we
move the pairing and loading constraints from the subproblem to
the master problem of the decomposition.

To solve these three formulations we have developed a branch-
and-cut (BC) algorithm, a branch-and-price (BP) algorithm, and a
branch-and-price-and-cut (BPC) algorithm. Our computational
experience analyzes the behavior and performance of these algo-
rithms on a large set of instances, and suggests the cases where it
is more appropriate to use each of the three approaches.

To the best of our knowledge no previous work has approached the
DVRPMS. However, our study follows a well established line of research
on similar complex routing and loading problems. Cordeau et al. [15]
proposed a BC algorithm for the pickup-and-delivery traveling salesman
problemwith LIFO loading, inwhich a single vehiclewith a loading space
organized in a single stack performs the loading/unloading operations in
mixed order. Later Côté et al. [16] generalized this problemusing a vehicle
with multiple stacks, proposing new inequalities to manage the LIFO
constraints and embedding them into a BC algorithm. Cherkesly et al. [17]
have recently proposed exact approaches to the pickup-and-delivery
problem with time windows and LIFO loading, developing a BC and a
BPC algorithm, as well as a hybrid algorithm combining these two
techniques. In the problem that they face, the pickup and the delivery
operations are performed in the same region, using a homogeneous fleet
of vehicles equipped with a single LIFO stack. The distance-constrained
variation of this problem has been approached by Cheang et al. [18] from
a heuristic point of view. For what concerns the large literature on
combined routing and loading problems, we refer the reader to the
recent surveys by Iori and Martello [19,20], whereas for the even larger

Fig. 1. Solution of a DTSPMS instance involving 16 products and a 2�8 vehicle.
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