
Generating new test instances by evolving in instance space

Kate Smith-Miles n, Simon Bowly
School of Mathematical Sciences, Monash University, Victoria 3800, Australia

a r t i c l e i n f o

Available online 9 May 2015

Keywords:
Test instances
Benchmarking
Graph colouring
Instance space
Evolving instances

a b s t r a c t

Our confidence in the future performance of any algorithm, including optimization algorithms, depends
on how carefully we select test instances so that the generalization of algorithm performance on future
instances can be inferred. In recent work, we have established a methodology to generate a 2-d
representation of the instance space, comprising a set of known test instances. This instance space shows
the similarities and differences between the instances using measurable features or properties, and
enables the performance of algorithms to be viewed across the instance space, where generalizations
can be inferred. The power of this methodology is the insights that can be generated into algorithm
strengths and weaknesses by examining the regions in instance space where strong performance can be
expected. The representation of the instance space is dependent on the choice of test instances however.
In this paper we present a methodology for generating new test instances with controllable properties,
by filling observed gaps in the instance space. This enables the generation of rich new sets of test
instances to support better the understanding of algorithm strengths and weaknesses. The methodology
is demonstrated on graph colouring as a case study.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In his seminal paper of 1994, “Needed: an empirical science of
algorithms”, Hooker [1] challenged the OR community to augment
its theoretical focus on worst-case or average-case analysis of
algorithms with a more empirical approach to algorithmic analy-
sis: one that enables better understanding of the likely perfor-
mance of algorithms on diverse test instances. He identified two
main directions: more rigorous experimental design to select test
instances intended to expose how the characteristics of the
instances affect algorithm performance; and the use of empirical
results to suggest hypotheses about algorithm behaviour, creating
empirically based theories that can be submitted to rigorous
testing. As such, he was proposing a paradigm shift in OR towards
an experimental mathematics approach [2].

In a follow-up paper in 1995, “Testing heuristics: we have it all
wrong” , Hooker [3] argued that randomly generated test instances
lack diversity and rarely resemble real-world instances. He also
expressed concern about the usefulness of commonly studied
benchmark instances and their intrinsic bias, typically well suited
to the first study that chooses to report on them but not necessarily
diverse or challenging. The over-tuning of algorithms to a relatively
small set of aging instances has major impact on the applicability of

those algorithms for real-world deployment, and for our ability to
learn about the strengths and weaknesses of algorithms from
empirical evidence.

As an illustrative example, consider a commercial university
timetabling algorithm that has been found to outperform compe-
titor software packages when tested on Italian university time-
tabling instances (from the University of Udine instances used in
the International Timetabling Competition). An Australian univer-
sity then purchases the software, and finds that it results in more
student clashes in the timetable compared to its previous software.
While the Italian and Australian universities are tackling the same
optimization problem (university curriculum timetabling), their
instances of the problem seem to have different enough properties
(class sizes, room capacities, number of subjects, etc.) that the
algorithm performs well on one class of instance but not another.

Ensuring that an algorithm (and choice of parameters) has been
tested thoroughly under all possible conditions that could be
encountered in real world deployment is a significant challenge.
Exhaustive testing is usually not possible due to the potentially
infinite state space. Instead, a handful of test instances are usually
the focus of algorithm development efforts, from which inferences
about performance on other instances are optimistically made.
Obtaining a sufficient number of real-world or real-world-like
instances for statistical inference can be difficult, especially since
synthetically generated instances of problems often have quite
different properties and underlying structure to real-world
instances [4–6]. Sampling from the set of possible test instances,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2015.04.022
0305-0548/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ61 3 99053170; fax: þ61 3 99054403.
E-mail address: kate.smith-miles@monash.edu (K. Smith-Miles).

Computers & Operations Research 63 (2015) 102–113

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.04.022
http://dx.doi.org/10.1016/j.cor.2015.04.022
http://dx.doi.org/10.1016/j.cor.2015.04.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.04.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.04.022&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.04.022&domain=pdf
mailto:kate.smith-miles@monash.edu
http://dx.doi.org/10.1016/j.cor.2015.04.022
http://dx.doi.org/10.1016/j.cor.2015.04.022


ensuring that the selected instances are real-world-like, and that
no selection bias has been introduced that would affect the
conclusions, is a significant challenge affecting algorithmic testing
in both industrial and academic environments.

Indeed, poor research practice in academia and deployment
disasters in industry can be viewed as stemming from the same
problem: inadequate stress-testing of algorithms, and a consequen-
tial failure to understand an algorithm's strengths and weaknesses.
The research culture often found in academic environments high-
lights the need for rigorous new methodologies and tools to
support better research practice in algorithm testing. The OR
literature, for example, is dominated by a methodology in which a
new algorithm is introduced and usually claimed to be superior by
showing that it outperforms previous approaches on a set of well-
studied test instances. However, the weaknesses of the algorithm
are rarely reported. Objective assessment of optimization algorithm
performance is notoriously difficult [1,3,7], especially when the
conclusions depend so heavily on the chosen test instances. The
opportunity now exists to challenge and extend these benchmarks,
and to generate new test instances that enable strong inferences to
be made about algorithm strengths and weaknesses to support
objective algorithmic testing [8].

Since Hooker's concerns were raised two decades ago, some
progress has been made, and benchmark datasets have been
expanding. Examples include the DIMACS challenge which created
new graph colouring benchmarks [4]; efforts to generate more
real-world-like instances of well-studied problems [9–12]; new
instances that are more challenging for particular algorithms
[13,14]; and some new instances with controlled characteristics
to support experimental mathematics [15,16]. In the field of graph
colouring, Culberson states on his webpage [17] about his graph
generators, “my intention is to provide several graph generators
that will support empirical research into the characteristics of
various colouring algorithms”. Greater awareness now also exists
for the importance of rigorous testing of algorithms [18].

It is not always straightforward however to generate new test
instances that have the right kind of properties that will (i) challenge
algorithms, enabling us to see their strengths and weaknesses and (ii)
reflect real-world properties. Certainly, there is no difficulty in
generating graphs that have a certain density, or other simple
properties that can be easily controlled by an instance generator.
But, as an example, it is much more difficult to construct a graph that
has a required algebraic connectivity (2nd smallest eigenvalue of the
Laplacian matrix of the graph). If we are to construct test instances
with controllable properties that are thought to be significant for
discriminating between algorithms or reflecting real-world proper-
ties, we must have the ability to understand which properties are
important and embed their control in the instance generation process.

The design of experiments approach randomly generates instances
by varying easily controlled parameters (usually just a subset of a
more comprehensive feature space) to create a Latin hypercube
design [15]. But more sophisticated ideas exist to enable better
control over the difficulty and applicability of the instances. The idea
of using a genetic algorithm (GA) to evolve instances with desirable
characteristics has been around for a decade, starting with creating
instances that are hard or “worst-case” for an algorithm [13,14].
Extending these ideas to create new instances that are easy or hard,
and uniquely easy or hard for particular algorithms, new Travelling
Salesman Problem instances have been evolved that have helped to
learn the strengths and weaknesses of algorithms more effectively
than relying on random or benchmark instances alone [19,20].

Another direction for instance generation has been to create
instances that are real-world-like. Typically this is done by studying a
small set of real-world instances and making small variations to some
key parameters [11,12]. We have previously implemented a different
approach using machine learning methods to identify differences

between real-world instances and those produced by random instance
generators, providing feedback on how to modify the generator so that
instances become more real-world-like [21]. Additionally, we have
imposed the condition that instances must be discriminating of
algorithm performance (not uniformly easy or hard for all considered
algorithms) so that the instances can be used for learning the unique
strengths and weaknesses of algorithms. New timetabling instances
were generated using this method, and shown to produce instances
that are more similar to real-world instances than those of the seed
instance generator [22], while simultaneously eliciting different perfor-
mance behaviours from competitive algorithms.

Critical to the success of being able to measure how similar a
synthetically generated instance is to a real-world instance, or the
degree to which it exhibits a certain property, is the idea of representing
the instances in a common instance space. Our recent work [8] has
developed powerful newmethodologies to enable objective assessment
of optimization algorithm performance within such an instance space.
Given a set of test instances, we can now generate a visual representa-
tion of the instance space as a topological mapping of the instance
properties, and measure the region of the instance space where an
algorithm can be expected to perform well, known as the algorithm
footprint [23,24]. We have applied this methodology to assess the
power of state-of-the-art optimization algorithms in an objective
manner [8,25,26], and shown that existing benchmark instances only
populate a small portion of the available instance space [8,21,24], and
often do not coincide with the location of real-world instances [21].

It is clear that relying solely on existing benchmark or randomly
generated instances limits our ability to understand the strengths
and weaknesses of algorithms. What is required now are methods
to generate a large number of new test instances for a given
problem, with controllable characteristics, to enable more rigorous
testing of algorithms. Where are the existing benchmark instances
in the instance space, and how diverse are they? How real-world-
like are they? How discriminating are they of algorithm perfor-
mance or do they elicit the same response from all tested algo-
rithms? Where should new test instances be located in the instance
space that would provide the most information about the strengths
and weaknesses of algorithms? The instance space provides the
ideal vehicle to recognize where new test instances are needed and,
combined with genetic algorithms, offers a mechanism to generate
new test instances that lie at target locations in the instance space.
This represents a fundamentally different approach to generating
test instances compared to previous methods, which lack the ability
to control for some of the sophisticated properties that are critical
to explaining algorithm performance.

This paper is the third in a series of papers developing a methodol-
ogy for providing insights into algorithm strengths and weaknesses. The
first paper [27] identified the properties of instances that affect
difficulty, for broad classes of combinatorial optimization problems,
and provides the starting point for constructing instance spaces for a
new problem. The second paper [8] demonstrated how to construct an
instance space, and how visualizing and measuring the area of
algorithm footprints in the instance space can provide the objective
assessment of algorithm strengths and weaknesses we seek. The
current paper extends these ideas to propose the use of the instance
space to understand where new test instances are required, and a
methodology to evolve new instances with controllable properties
exploiting the mathematical relationships between the instance proper-
ties and their location in the instance space. In Section 2 we define the
instance space, using graph colouring as an example, to illustrate how
an instance space is constructed. Section 3 then presents the methodol-
ogy for evolving new test instances within the instance space. A
collection of new graph colouring test instances is presented in
Section 4, and their diversity as compared to existing benchmarks is
discussed. Finally, conclusions are drawn in Section 5, where we also
identify opportunities for further research on this important topic.

K. Smith-Miles, S. Bowly / Computers & Operations Research 63 (2015) 102–113 103



Download English Version:

https://daneshyari.com/en/article/472957

Download Persian Version:

https://daneshyari.com/article/472957

Daneshyari.com

https://daneshyari.com/en/article/472957
https://daneshyari.com/article/472957
https://daneshyari.com

