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a b s t r a c t

We consider the problem of determining the smallest square into which a given set of rectangular items
can be packed without overlapping. We present an ILP model, an exact approach based on the iterated
execution of a two-dimensional packing algorithm, and a randomized metaheuristic. Such approaches
are valid both for the case where the rectangles have fixed orientation and the case where they can be
rotated by 901. We computationally evaluate the performance and the limits of the proposed approaches
on a large set of instances, including a number of classical benchmarks from the literature, for both cases
above, and for the special case where the items are squares.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the problem of packing a given set of rectangular
items into a square bin of minimum edge. The items must be
packed, without overlapping, with their edges parallel to the edges
of the bin. Using the typology of cutting and packing problems
proposed by Waescher et al. [31], this problem belongs to the
“open dimension” class, characterized as

[input minimization/variable dimension/arbitrary assortment of
small rectangular items].

We will address the following specific versions of the problem,
as classified by Caprara et al. [8]:

PRSO (Packing Rectangles into a Square in the Oriented case): the
items are oriented rectangles, i.e., they cannot be rotated;

PRSR (Packing Rectangles into a Square with Rotation): the items
are rectangles that can be rotated by 901,

plus the special case of both:

PSS (Packing Squares into a Square): the items are squares.

Packing into squares has a number of practical applications, for
example in VLSI design when a set of rectangular components
has to be packed on a square chip. In addition, these problems
can arise as subproblems to be solved in more complex two-
dimensional packing problems like, e.g., those arising when

rectangular objects that cannot be stacked have to be loaded on
square pallets.

The problems we consider have been treated in the literature
mainly from a theoretical point of view. Problem PSS was proved
to be strongly NP-hard by Leung et al. [23], hence the same holds
for PRSO and PRSR. Caprara et al.[8] introduced some simple lower
bounds for the three problem versions, and analyzed their worst-
case performance. Bansal et al. [3] gave a polynomial time
approximation scheme (PTAS) for problem PRSO. The result was
extended to PRSR by Correa [12]. These results immediately lead to
a PTAS for PSS.

From a computational point of view, the running time of the
above mentioned algorithms (which is exponential in the inverse
of the relative error) rules out the possibility of their use for the
practical solution of these problems. Picouleau [29] proposed
simple heuristics for PSS, and determined the worst-case perfor-
mance of some of them.

We are not aware of other contributions on the specific
problems we are dealing with. Different, but similar, open dimen-
sion problems have been addressed by Korf [20,21], Huang and
Korf [17] and Korf et al. [22], who considered the problem of
packing a given set of rectangles into a rectangle of minimum area.
This problem appears to be more challenging than that of packing
into the smallest square, as the two sides of the optimal bin have
to be determined instead of one.

More different open dimension problems have been also
studied, concerning, e.g., the packing of cylinders (Birgin et al.
[7]), of polygons (Stoyan and Patsuk [30]) or of irregular shapes
(Costa et al. [13]).

Other related problems belong to the area of two-dimensional
packing: the two-dimensional bin packing problem will be used as
a subproblem in the solution approach described in Section 3.3. An
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extensive literature is available for these topics, for which we refer
the interested reader to the survey by Lodi et al. [24].

In this paper we propose two exact methods and a heuristic
approach to the solution of problems PRSO, PRSR, and PSS. In
Section 2 we provide mathematical formulations. In Section 3 we
introduce a constructive heuristic, simple ways to compute lower
bounds, and two exact approaches. The performance of these
methods is evaluated through computational experiments on a
benchmark composed by instances from the literature and ran-
domly generated instances. In Section 4 we propose a randomized
metaheuristic algorithm which has reminiscences of different
metaheuristic paradigms. Further computational experiments are
used to evaluate the algorithm's performance. Conclusions are
drawn in Section 5.

Throughout the paper we assume, without loss of generality,
that all input data are positive integers.

2. Integer linear models

In this section we provide Integer Linear Programming (ILP)
models for problems PRSO and PRSR introduced in Section 1,
problem PSS being a special case of both. We follow the modeling
approach commonly used for two-dimensional packing problems
(see Beasley [5]), which requires a pseudo-polynomial number of
variables and constraints. A different modeling technique, based
on the enumeration of all possible relative placements of each pair
of items, was proposed by Onodera et al. [28] for a special two-
dimensional block placement problem. Their method can lead to
models of polynomial size, but with known low efficiency in
practice (see, e.g., Chen et al. [10]), so the research in this area
mostly concentrated on the former approach (see, e.g., Hadjicon-
stantinou and Christofides [16]).

The following definitions are common to the three considered
problems. The input consists of n rectangular items, each char-
acterized by width wj and height hj (j¼ 1;…;n), to be packed
without overlapping into the smallest possible square of side z. Let
u be any upper bound on the optimal solution value (edge of the
enclosing square bin).

Assume that the bottom-left corner of the bin is at coordinate
ð0;0Þ of a Cartesian system having axes x and y and integer
coordinates. The problem of packing rectangles into a square in
the oriented case (PRSO) can then be modeled by introducing
binary variables

ξjpq ¼
1 if item j is packed ðwithout rotationÞ with its bottom� left corner at ðp; qÞ;
0 otherwise

�

ð1Þ

for j¼ 1;…;n, p¼ 0;…;u�wj, q¼ 0;…;u�hj, where coordinates
x4u�wj (resp. y4u�hj) are excluded for obvious reasons.

In order to reduce the number of binary variables, we can make
use of a consideration made by Christofides and Whitlock [11] for
the two-dimensional knapsack problem. Observe indeed that, for
any feasible packing in a square of edge u, there exists an
equivalent packing in a square of edge not greater than u in which
each item j is moved left and then down as much as possible. In
this way, each item will have both its left and bottom edge
touching either the enclosing square or another item. We can
consequently define a set of normal coordinates, i.e., coordinates
that can be obtained by combination of all widths (resp. heights)
of the other items, namely

Wj ¼ x : 0rxru�wj; x¼
X
kA S

wk for some SDf1;…;ng\fjg
( )

;

Hj ¼ y : 0ryru�hj; y¼
X
kA S

hk for some SDf1;…;ng\fjg
( )

:

In (1) we will then only define ξjpq variables for which pAWj

and qAHj (j¼ 1;…;n). The resulting model for PRSO is then

min z ð2Þ
X
pAWj

X
qAHj

ξjpq ¼ 1 ðj¼ 1;…;nÞ ð3Þ

Xn
j ¼ 1

Xr

p ¼ r� ðwj � 1Þ
pAWj

Xs

q ¼ s� ðhj � 1Þ
qAHj

ξjpqr1 ðr; s¼ 0;…;u�1Þ ð4Þ

zZ
X
pAWj

X
qAHj

p ξjpqþwj ðj¼ 1;…;nÞ ð5Þ

zZ
X
pAWj

X
qAHj

q ξjpqþhj ðj¼ 1;…;nÞ ð6Þ

ξjpqAf0;1g ðj¼ 1;…;n; pAWj; qAHjÞ: ð7Þ

The objective function (2) minimizes the edge z of the resulting
square bin. Eqs. (3) establish that the bottom-left corner of each item
is placed in exactly one position. Inequalities (4) impose that any unit
square, having its bottom-left corner, say, at coordinate (r,s), is
occupied by at most one item. Finally, (5) and (6) define the value
of z as the maximum right and upper side of an allocated item. The
model has pseudo-polynomial size, as it requires u2þ3n constraints
and

Pn
j ¼ 1 jWj j � jHj j , i.e., Oðnu2Þ, variables. As it will be evident

from the computational analysis of Section 3.4, such size can be very
large in practice, when the number of items and/or their size are big.

The ILP model for PRSO is obviously valid for PSS as well. In this
case the model can be simplified by observing that Wj¼Hj for all j.

An ILP model for PRSR can be derived from the previous one as
follows. In addition to variables ξjpq, see (1), let

ϑj
pq ¼

1 if item j is packed; rotated by 901;with its bottom� left corner at ðp; qÞ;
0 otherwise

�

ð8Þ
for j¼ 1;…;n, p¼ 0;…;u�minðwj;hjÞ, q¼ 0;…;u�minðwj;hjÞ. The
number of variables can again be reduced by only considering
normal coordinates. In this case however, for each item j, the
(unique) set Ej of normal coordinates (to be used both for x and y)
includes all values that can be obtained by combination of all
widths and heights of the other items, namely

Ej ¼ v : 0rvru�minðwj; hjÞ; v¼
X
kAS

wkþ
X
kAT

hk; S; TDf1;…;ng\fjg; S \ T ¼∅

( )
:

We obtain

min z ð9Þ
X

p;qAEj

ðξjpqþϑj
pqÞ ¼ 1 ðj¼ 1;…;nÞ ð10Þ

Xn
j ¼ 1

Xr

p ¼ r� ðwj � 1Þ
pA Ej

Xs

q ¼ s� ðhj � 1Þ
qA Ej

ξjpqþ
Xr

p ¼ r � ðhj � 1Þ
pA Ej

Xs

q ¼ s� ðwj � 1Þ
qA Ej

ϑj
pq

0
B@

1
CAr1 ðr; s¼ 0;…;u�1Þ

ð11Þ

zZ
X

p;qAEj

p ξjpqþwj ðj¼ 1;…;nÞ ð12Þ

zZ
X

p;qAEj

p ϑj
pqþhj ðj¼ 1;…;nÞ ð13Þ
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