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a b s t r a c t

This paper introduces several algorithms for finding a representative subset of the non-dominated point
set of a biobjective discrete optimization problem with respect to uniformity, coverage and the ϵ-
indicator. We consider the representation problem itself as multiobjective, trying to find a good
compromise between these quality measures. These representation problems are formulated as
particular facility location problems with a special location structure, which allows for polynomial-
time algorithms in the biobjective case based on the principles of dynamic programming and threshold
approaches. In addition, we show that several multiobjective variants of these representation problems
are also solvable in polynomial time. Computational results obtained by these approaches on a wide
range of randomly generated point sets are presented and discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Typically, multiobjective optimization problems are solved
according to the Pareto principle of optimality: A solution is called
efficient if there is no other feasible solution which is at least as
good in all objectives and strictly better in at least one of them.
Each of these efficient solutions corresponds to a good compro-
mise among a number of alternatives, and each of them is
potentially relevant to a decision maker. Therefore, the goal of
multiobjective optimization is to compute the efficient set, from
which the decision maker chooses the most preferable solution.
Since this set may be too large to present to a decision maker,
procedures that produce succinct representations of the efficient
set are of particular interest in the context of practical applications.

This paper focuses on the computation of a good representation of
the efficient set, the so-called representation problem, where the
quality of the representation is measured with respect to some
property of interest [1,2]. The three underlying assumptions are:
(i) the efficient set is given; (ii) the decision maker is able to choose
the preferred solution based solely on its location in the objective
space (an efficient solution corresponds to a non-dominated point in
the objective space); and (iii) the cardinality of the representation (k)

is provided. Two widely accepted ways of measuring the quality of a
representation [3–6] were introduced by Sayin [2], and are explored
in this paper: (i) uniformity, the representation points are as spread as
possible and (ii) coverage, the representation points are close to the
remaining non-dominated points. As these two quality measures
may be conflicting, the representation problem that arises from the
combination of these two properties, as two objectives, is also of
interest.

A third quality measure, known as the ϵ-indicator [7], is also
considered in this paper. The ϵ-indicator is a widely accepted
measure of performance of heuristic approaches to multiobjective
optimization. In this paper, this indicator is used as a measure of
the quality of the representation, and is shown to be closely
related to the notion of coverage.

This paper considers only representation problems for biobjec-
tive combinatorial optimization problems, for which polynomial-
time algorithms can be derived for all three quality measures.
Since the set of all non-dominated points can be totally ordered in
the biobjective case, the representation problem can be recast as a
special type of one-dimensional facility-location problems, such as
the k-center and k-dispersion problem, for which certain proper-
ties can be efficiently explored from an algorithmic point of view.

The three quality measures considered give rise to different
representation problems with bottleneck objective functions. Bot-
tleneck objective functions [8] represent a class of objective
functions whose goal is to maximize (over all subsets) a minimum
quantity over all the elements, or vice versa. The algorithms
proposed in this paper fall into two typical types of approaches
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to this class of problems: dynamic programming and threshold
approaches. Whereas dynamic programming consists of solving a
sequence of smaller optimization problems, threshold approaches
solve a sequence of related feasibility problems. The various
algorithms are designed so that they can be easily integrated to
solve the representation problems that arise when two or more
quality measures are considered together. Table 1 shows the time-
complexities that were achieved with the two approaches
described in this paper for solving several representation pro-
blems, where n is the cardinality of the non-dominated set and k is
the cardinality of the representation.

The paper is organized as follows. Section 2 introduces defini-
tions and notation that will be used throughout the paper.
Sections 3, 4 and 5 introduce the three representation problems
according to uniformity, coverage and the ϵ-indicator, respectively,
as well as the two solution methods and experimental results.
Then, Section 6 introduces four multiobjective formulations of the
representation problem. Finally, Section 7 presents a discussion
and conclusions about the main results of this paper.

2. Definitions and notation

In this section, we describe optimality concepts of biobjective
optimization problems, as well as several formulations of repre-
sentation problems that arise from three proposed representation
quality measures: uniformity, coverage and ϵ-indicator.

2.1. Optimality concepts

We consider biobjective, discrete optimization problems with
two maximizing objectives, i.e.,

vmax
xAX

f ðxÞ ¼ vmax
xAX

f 1ðxÞ; f 2ðxÞ
� �

ð1Þ

where X denotes the set of feasible solutions and f i : X-R, i¼1,2,
are two (generally conflicting) objective functions. Let x; x0AX. In
the context of Pareto optimality, we introduce the following
dominance relations [9]:

� f ðxÞZ f ðx0Þ, i.e., f(x) weakly dominates f ðx0Þ, if and only if
f iðxÞZ f iðx0Þ; i¼ 1;2;

� f ðxÞ4 f ðx0Þ, i.e., f(x) dominates f ðx0Þ, if and only if f ðxÞZ f ðx0Þ and
f ðxÞa f ðx0Þ.

These definitions immediately generalize to higher dimen-
sional problems and to minimization problems. When neither
f ðxÞ4 f ðx0Þ nor f ðx0Þ4 f ðxÞ holds, we say that the objective vectors
f(x) and f ðx0Þ are incomparable. We also use the same notation
among solutions, when the corresponding relation holds in the
objective function space. A solution xAX is called efficient (or

Pareto optimal), if and only if there is no other feasible solution
x0AX such that f ðx0Þ4 f ðxÞ; in this case its corresponding objective
vector is called non-dominated. The set of all efficient solutions is
called the efficient set and the set of all non-dominated vectors is
called the non-dominated set (represented as vmaxxAXf ðxÞ in Eq.
(1)). Note that the vectors in the non-dominated set are pairwise
incomparable.

Throughout this paper we assume that the feasible set X and its
image Y ¼ f ðXÞ �R2 are discrete, and that the non-dominated set
BDY is finite. We search for a good representation RDB of the
non-dominated set, where different quality measures are used to
distinguish between different representations. In the following
sections, we assume that the non-dominated set B is known and
that a positive integer k with krn¼ jBj is given. According to
some measure of quality, we try to find a representative subset
RDB with jRj ¼ k. Without loss of generality we assume that all
points in B have only positive components.

2.2. Uniformity

Sayin [2] proposed the property of uniformity to measure how
far apart the k chosen elements of a set R are from each other, or
how well they are spread over the non-dominated set. It is
computed as the minimum distance between a pair of distinct
elements as

IUðRÞ ¼min
ri ;rj A R
ri a rj

‖ri�rj‖; ð2Þ

where Jri�rj J is a p-norm with 1rpr1. The goal of the
uniformity representation problem is to find a subset R, with a
given cardinality k, from a set B that maximizes IU(R), i.e.,

max
RD B

j R j ¼ k

IUðRÞ: ðURÞ

Note that this problem corresponds to a particular case of the
k-dispersion problem in facility-location; see, for example, Ravi
et al. [10].

2.3. Coverage

A second property proposed by Sayin [2] is coverage, which
measures the quality of the representative subset by considering
the distance of the unchosen elements to their closest elements in
the subset. Formally, the coverage of a subset R with respect to a
set B is computed as

ICðR;BÞ ¼max
bAB

min
rAR

Jr�bJ :

The coverage representation problem consists of finding the subset
of cardinality k that has the smallest coverage value (coverage
radius), i.e.,

min
RD B

j R j ¼ k

ICðR;BÞ: ðCRÞ

This problem is known in the literature of facility-location as
the k-center problem; see Kariv and Hakimi [11] for an early
reference as well as Hassin and Tamir [12] and Schöbel [13] for a
problem closely related to the coverage representation problem
considered here.

2.4. ϵ-indicator

The ϵ-indicator is a well-known measure of performance in
heuristic solution approaches and approximation algorithms for
multiobjective optimization problems [14]. In the context of the
representation problem considered here, it corresponds to the
smallest factor that can be multiplied to each element in the
subset R such that every point in the set B becomes weakly

Table 1
Time-complexities of the dynamic programming and threshold algorithm for the
considered representation problems.

Problem Dynamic
programming

Threshold
algorithm

Uniformity Oðk nþnlognÞ Oðn2lognÞ
Coverage Oðk nþnlognÞ Oðn2lognÞ
ϵ-Indicator Oðk nþnlognÞ Oðn2lognÞ
Coverage–uniformity Oðk n4lognÞ Oðn4Þ
ϵ-Indicator–uniformity Oðk n4lognÞ Oðn4Þ
Coverage–ϵ-indicator Oðk n4lognÞ Oðn3lognÞ
Coverage–ϵ-indicator–

uniformity
Oðk n6lognÞ Oðn6Þ
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