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Post-stack 3D seismic data is spatially blurred by the effects of migration operators with limited aperturewidths,
which is not conducive to discontinuity (such as fault, channel, etc.) detection. By approximating the migration
blur with a time-invariant point spread function (TIPSF), seismic image deblurring methods have been used to
obtain data with enhanced discontinuity. Better discontinuity detection results can be achieved on the deblurred
data than on the original data. Since the migration blurs are always time-dependent, a time-variant PSF (TVPSF)
estimation method is proposed in this paper to approximate these blurs. In our method, initial PSFs correspond-
ing to each horizontal time slice (HTS) from a 3D seismic data are first obtained. Then, PSFs corresponding to ad-
jacent time slices are divided into the same categories based on their similarities.With average PSFs calculated in
each category, linear interpolation is performed to estimate PSFs for thewhole data set. Finally, we perform seis-
mic image deblurring HTS by HTS with these estimated PSFs. To suit different signal-to-noise ratios (SNR) in
these HTSs of the 3D seismic data, the whitening factor of the Wiener filter for each HTS is adjusted adaptively.
Using field dataset examples, we demonstrate that the performance of our proposed TVPSFmethod outperforms
the TIPSF method.
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1. Introduction

Identification and detection of faults and stratigraphic features are
crucial in seismic data interpretation. The 3D seismic coherency cube,
proposed by Bahorich and Farmer (1995), is a common tool for delin-
eating seismic faults. The first generation coherence algorithm (C1) is
based on second order statistics and deals with only three traces.
Though being computationally efficient, this method may lack robust-
ness, especially when dealing with noisy data (Marfurt et al., 1998).
The second generation coherence algorithm (C2) is based onmultitrace
semblance (Marfurt et al., 1998). Compared with the C1 algorithm, the
C2 algorithm shows higher vertical resolution and better immunity to
noise. The third generation coherence algorithm (C3) based on an
eigenstructure approach is developed by Gersztenkorn and Marfurt
(1999). The C3 algorithm has a higher resolution and is more robust
than the C1 and C2 algorithms (Marfurt et al., 1999). Cohen and
Coifman (2002) estimate coherence through calculating the seismic
local structural entropy (LSE), which is more efficient than the C3 algo-
rithm. Lu et al. (2005) present a higher-order statistics-based supertrace
coherence-estimation algorithm (ST-HOSC) and a supertrace coherence
algorithm (ST-C1). The ST-C1 and ST-HOSC algorithms preserve the

computational efficiency of the C1 algorithm and providemore capabil-
ity to restrain noises. Li et al. (2006) propose a dip-scanning coherence
algorithm (STC3) by combining the eigenstructure analysis with the
supertrace technique. The STC3 algorithm further improves the quality
of the coherence image and is robust to noise.

There exist a number of other techniques to enhance and detect the
seismic discontinuity, such as the horizon-based curvature attributes
(Roberts, 2001), the curvature volume analysis (Chopra and Marfurt,
2010), the supertrace-based algorithm with robust slope estimation
(Zhang et al., 2013) and an improved coherence estimation combined
with complex seismic trace analysis (Wang et al., 2015). On the other
hand, image processing techniques are often used to enhance seismic
attributes, such as edge detection (Al-Dossary and Marfurt, 2003),
image enhancement (Narhari et al., 2007), the coherence cube enhance-
ment (Wang and Lu, 2010), and etc. Post-stack 3D seismic data is
blurred spatially by the effect of migration operators with limited aper-
ture widths (Hu et al., 2001). The goal of image deblurring is to recon-
struct the original scene from a degraded observation. Classical image
deblurring seeks an estimate of the true image assuming the blur is
known (e.g., Oliveira et al., 2009; Zhao et al., 2013; Liu et al., 2014;
Huang et al., 2014; Shi et al., 2016). In contrast, blind image restoration
tackles the much more difficult problem where the degradation is un-
known (Campisi and Egiazarian, 2016). Some representative algorithms
for blind image restoration are the iterative methods (Nagy et al.,
2004,), total least squares (Mastronardi et al., 2004), the algorithm
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based on higher-order statistics (Lu, 2006), learning-based algorithms
(Nakagaki and Katsaggelos, 2003) and the Bayesian restoration algo-
rithm (Chantas et al., 2006). For seismic image deblurring, only the de-
graded images of 3D seismic data are known. It is a Blind Deconvolution
(BD) problemwhich is the process of estimating the true image and the
blur (PSF) from the degraded image. Since the size of Post-stack 3D seis-
mic data is much larger than 2D image, and the enormous computation
amount limits the application of BD related algorithms. In this paper, we
mainly concentrate on estimating the time-variant PSFs, and utilizing
self-adaptive 2D Wiener filters with stable and high computation effi-
ciency to eliminate the effects of blur.

Lu et al. (2004) first introduce image deblurring to enhance 3D seis-
mic data volume, which is denoted as TIPSF (Fig. 1(a)). The deblurred
seismic data volume can be obtained by utilizing a self-adaptive 2D
Wiener filter to remove the effects of the PSF. Then, a discontinuity de-
tectionmethod (say, the coherence algorithm)on the deblurred seismic
data instead of on the original seismic data is used to obtain a better re-
sult. However, the influences of themigration operators vary from shal-
low to deep regions, and the signal-to-noise ratio (SNR) of thedeblurred
HTS is rather sensitive to the whitening factor of the Wiener filter. The
time-invariant PSF and constant whitening factor for all HTSs in TIPSF
method may result in poor deblurring results and amplified noise.

In this paper, we propose a time-variant PSF estimation algorithm
for seismic image deblurring, which is denoted as TVPSF (Fig. 1(b)).
We first obtain a series of initial PSFs' estimates from each HTS. Time
windowswith adaptive length are constructed according to the similar-
ities of these initial PSFs' estimates. Then, we use the average of these
initial PSFs' estimates as the final PSF estimate of the center point in
this time window. For non-center sample points, linear interpolation
is implemented to calculate their final PSFs. At last, a 2D Wiener filter
is used to eliminate the effects of the PSFs. The whitening factors are
also selected adaptively according to the energy curve of the 3D seismic
data. With an onshore field dataset of China, we validate the effective-
ness of the proposed method.

2. Method

The key step of the seismic image deblurring is to estimate the PSF.
The degraded seismic HTS g(x,y, ti) can be represented as the two-
dimensional convolution of the true seismic HTS f(x,y, ti) with a PSF h(x,
y, ti) (Gonzalez and Woods, 2002):

g x; y; tið Þ ¼ f x; y; tið Þ⋇h x; y; tið Þ þ n x; y; tið Þ;
x; y∈ℤ; i∈ 1;Nð Þ ð1Þ

where N is the number of time samples, n(x,y, ti) denotes the additive
Gaussian noise with standard deviation σ, ⋇ denotes the spatial

convolution operator, and ℤ is a set of integer numbers. Since convolu-
tion in spatial domain is equal to multiplication in wave-number do-
main, we can rewrite the Eq. (1) in wave-number domain as

G u; v; tið Þ ¼ F u; v; tið ÞH u; v; tið Þ þ N u; v; tið Þ ð2Þ

where the terms in capital letters are the Fourier transforms of corre-
sponding terms in Eq. (1).

The auto-correlation of the PSF can be estimated by windowing
the auto-correlation Mg(m,n, ti) of degraded seismic HTS G(u,v, ti)
(Lu, 2005):

Mh m;n; tið Þ ¼
Xj¼iþLp=2

j¼i−Lp=2

Mg m;n; t j
� �

0
@

1
AW2 m;nð Þ ð3Þ

where Lp is the length of the pth adaptive window, W2(m,n) is a 2D
Hanning window which can be generated by two 1-D Hanning win-
dows:

W2 m;nð Þ ¼ W1 mð ÞW1 nð Þ: ð4Þ

The auto-correlation of the degraded seismic HTS Mg(m,n, ti) can be
calculated by

Mg m;n; tið Þ ¼ IFFT2 G u; v; tið ÞG� u; v; tið Þð Þ ð5Þ

where IFFT2 represents the 2D inverse Fourier transform, G⁎(u,v, ti) is
the complex conjugate of G(u,v, ti).

By setting the phase spectrum of the PSF as zero, the power spec-
trum can be estimated as

PH u; v; tið Þ ¼ FFT2 Mh m;n; tið Þð Þ; ð6Þ

where FFT2 represents the 2D forward Fourier transform, PH(u,v, ti) is
the power spectrum of the PSF.

Then, the estimation of the PSF with zero-phase spectrum in wave-
number domain can be given by:

H u; v; tið Þ ¼ PH u; v; tið Þð Þ1=2: ð7Þ

We assume that the Gaussian noise n(x,y, ti) and the true seismic
HTS F(u,v, ti) are uncorrelated, the Wiener filter (Kundur and
Hatzinakos, 1996) based on minimum mean square error criterion can
be expressed in the wave-number domain

B u; v; tið Þ ¼ H� u; v; tið ÞP F u; v; tið Þ
P F u; v; tið ÞPH u; v; tið Þ þ PN u; v; tið Þ ; ð8Þ

Fig. 1. Illustration of the seismic image deblurring using (a) the TIPSF and (b) TVPSF algorithm.
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