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Density contrast interface inversion is one of the primary subjects in gravity fields for understanding the Earth's
interior structure. In this paper, we presented a new 3D approach for density contrast interface inversion based
on the parabolic density function in the frequency domain. The Parabolic density function is adopted to better re-
flect the real density structure in the subsurface. And the frequency-domain algorithm is utilized to enhance com-
putational efficiency of the forward modeling and inversion. We first derived formula of the frequency-domain
parabolic density function, and then presented its procedure for forward modeling and inversion of gravity
anomalies to determine density interfaces underground. We also proposed the related techniques for determin-
ing themodel density parameters and the referencing datum depth, as well as for accelerating convergence. The
synthetic data test demonstrated that the new approach and its related techniques are effective and reliable. Fi-
nally, we utilized the new approach to obtain theMoho depth distribution in the Sichuan–Yunnan region, China.
The result of our approach is consistent well with that from the receiver function, and is better than that from the
conventional constant density function approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The density contrast interface inversion of gravity data is an impor-
tant issue in gravity data inversion, which has great significance for
studying basement depth, crustal thickness, and regional tectonics.
Bott (1960) first proposed the density interface inversion approach
based on the constant density function to obtain the basement depth.
Later, Leão et al. (1996) and Barbosa et al. (1997) added depth con-
straints on the constant density function to reduce the ambiguity of in-
version. However, the actual density varies with a number of factors,
such as pressure, compaction degree, porosity, rock ages and depth
(Athy, 1930). During the process of vertical variation, rock density
varies rapidly in the shallows, and then slowly with the depth increas-
ing. Therefore, it is necessary to use a density function varying with
depth for the interface inversion, in accordance with the real geology.
Cordell (1973) presented an approach for the interface inversion
based on an exponential density function to cater to density varying
with depth in the real sedimentary basin. Rao (1986) applied a binomial
density function in the space domain to 2Dgravitymodeling,whichwas
later extended to a 3D inversion of gravity data by Gallardo-Delgado
et al. (2003). Rao et al. (1993) found that the parabolic density function
could not only approximate the real density values, but also give gravity
expressions for various geological models. The comparison between the
parabolic, binomial and exponential functions shows that the parabolic

function better fits most crustal structures (Rao et al., 1994).
Chakravarthi and Sundararajan (2004) and Işik and Şenel (2009) ap-
plied the density interface inversion approach based on the parabolic
density function to obtain good results in agreement with the real geo-
logic situations.

The above approaches for density interface inversion in the space
domain modeled the subsurface space as a collection of rectangular
prisms, and utilized an iterative algorithm for inversion. However,
these approaches involve a large amount of calculation for gravity
modeling of these prisms and the repetition of such calculation during
the iterative inversion, greatly decreasing the efficiency of inversion.
Whereas, the frequency-domain algorithm has the advantage of fast
calculation, and thus is widely used in many fields. Parker (1973) first
present the frequency-domain approach for forward modeling of grav-
ity interface based on a constant density function, and later Oldenburg
(1974) proposed an iterative inversion approach for the density con-
trast interface based on the constant density function in the frequency
domain. Guspi (1992) presented the three-dimensional frequency-
domain forwardmodeling and inversion equations of gravity anomalies
based on density contrast polynomials varyingwith depth, whichmade
the Parker's and Oldenburg's approaches more universal. Ke et al.
(2006) employed a frequency-domain approach for density interface
inversion based on the exponential density function, and obtained the
Moho depth of the Tibetan plateau by using the approach. However,
there remains a gap in the frequency-domain inversion relating to the
study and application of the density contrast parabolic varying with
depth, which can better approximate the actual crustal structure.
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In this paper, we presented a new approach for density interface in-
version, by combining the merits of the parabolic density function and
the frequency domain algorithms presented by Parker (1973) and
Oldenburg (1974). Through a series of theoretical formula derivations,
we obtained the equation of a frequency-domain parabolic density
function, and then we presented its procedure for forward modeling
and inversion density interface. We further discussed the related tech-
niques for determining the model density parameters, the referencing
datum depth, and the technique for accelerating convergence, as well
as their effects on the inversion results. We tested the effectiveness of
the new approach and its related techniques on the synthetic data.
Finally, we performed the new approach on the regional gravity anom-
alies in the Sichuan–Yunnan region to obtain the Moho depth distribu-
tion, and then compared the result with those from the receiver
function and the conventional constant density function approach.

2. Method

2.1. Frequency-domain forward modeling of the interface based on the
parabolic density function

Suppose the density contrast of the target interface varies with
depth and can be approximated well by a parabolic function as (Rao
et al., 1993):

σ ζð Þ ¼ σ0
3

σ0−αζð Þ2 ð1Þ

where σ(ζ) is the density function at depth ζ, σ0 is the density contrast
on the ground, and α is the density attenuation coefficient. In the prac-
tical application, σ0 and α usually can be determined according to the
known values of density at some different depths.

Then, by using a right-hand coordinate system, the gravity anomaly
at an arbitrary station (x,y,0) on the regular observational geometry
caused by the residual mass above the target interface can be expressed
as:

Δg x; y;0ð Þ ¼ G∭
V

σ ξ;η; ζð Þζ
ξ−xð Þ2 þ η−yð Þ2 þ ζ2

h i3
2

dξdηdζ : ð2Þ

where G is the universal gravitation constant, V is the whole volume of
the residual mass and dξdηdζ is an element volume for integral.

Substituting the parabolic density function (Eq. (1)) into Eq. (2)
yields:

Δg x; y;0ð Þ ¼ G∭
V

σ0
3 ξ; ηð Þζ

σ0 ξ;ηð Þ−αζð Þ2 ξ−xð Þ2 þ η−yð Þ2 þ ζ2
h i3

2

dξdηdζ : ð3Þ

Applying the Fourier transform to Eq. (3), we obtain:

F Δg½ � ¼ G
Z Z þ∞

−∞

ζ
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h i3

2
e−i uxþvyð Þdxdy∭

V

σ0
3 ξ; ηð Þ

σ0 ξ; ηð Þ−αζð Þ2dξdηdζ :

ð4Þ

where u and v are the wave numbers along x and y directions,
respectively.

According to the convolution theorem and the Hankel transform,
there is:

F Δg½ � ¼ 2πGe−kz0∬
D

σ0
3 ξ; ηð Þe−i uξþvηð Þdξdη

Z h

0

e−
ffiffiffiffiffiffiffiffiffiffi
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p
ζ
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If we let
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
¼ k, and apply the Taylor expansion e−

ffiffiffiffiffiffiffiffiffiffi
u2þv2

p
ζ ¼

e−kζ at ζ = 0, we have:
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D
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Integrating Eq. (6) over ζ, we finally obtain the frequency spectrum
of the gravity anomaly:

F Δg½ � ¼ 2πGe−kz0

α2 F L1½ � þ kF L2½ � þ
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whereL1 ¼ σ0
3 ξ;ηð ÞΔh

b b−Δhð Þ ,L2 ¼ σ0
3 ξ; ηð Þ Δh

Δh−b− ln 1− Δh
b
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,L3 ¼ − σ0

3 ξ;ηð ÞΔhn
Δh−b ,

L4 ¼ σ0
3 ξ;ηð ÞΔh , L5 ¼ σ0

3 ξ;ηð Þ ln 1− Δh
b

� �
, L6 ¼ σ0

3 ξ;ηð ÞΔhi , b ¼
σ0 ξ;ηð Þ

α −z0, and Δh is the relief of the interface.
Then we can obtain the gravity anomaly in the space domain

through performing a reverse Fourier transform on Eq. (7).

2.2. Frequency-domain inversion of the interface based on the parabolic
density function

The basic workflow of our inversion is stated below. We first estab-
lish an initial model according to the observed gravity anomaly. Then
we conduct forward modeling in the frequency domain based on the
parabolic density function, and calculate the least-square deviation be-
tween the theoretical gravity anomaly and the observed one. And
then according to the deviation, we modify the initial model, and
redo-forward modeling and comparisons until the deviation smaller
than the tolerance. The detailed procedure for our inversion approach
is listed as follows:

1) Read in the observed anomalies Δg, the initial density parameters in
Eq. (1) and the referencing datum depth, and transform the ob-
served gravity data into the frequency domain to get F [Δg].

2) Use Eq. (8) to calculate the initial depth of the target interface Δh(0)

where p ¼ F−1 α2ekz0 F Δg½ �=2πG� f kð Þ� �
, and f(k) is a filter factor.

Δh 0ð Þ ¼
pb2

�
σ0

3

1þ pb
.

σ0
3

ð8Þ

3) Perform forward modeling using the initial depth Δh(0) and Eq. (7),
yielding the theoretical gravity anomaly in the frequency domain
F [Δg](1), and then obtaining the space-domain one Δg (1) via the in-
verse Fourier transform.

4) Use Eq. (9) below tomodify the initial depthΔh(0), obtaining themod-
ification Δh, where q ¼ F−1 F Δg½ �−F Δg 1ð Þ

h i� 	
α2ekz0=2πG� f kð Þ

h i
.

Δh ¼
qb2

�
σ0

3

1þ qb
.

σ0
3

ð9Þ

5) Calculate the new depth of the target interface Δh(1) from Δh(1) =
Δh(0) + Δh × λ, where λ is an accelerating convergence factor.

6) Calculate the least square deviation between the theoretical gravity
anomaly and the observe one, i.e., ‖Δg− Δg(1)‖2.

7) Judge whether the deviation is smaller than the tolerance. If not, re-
peat steps 3) to 6) until it is attained.

8) When the convergence is reached after n times of iteration, the final
interface depth is h= Δh(n) + z0.
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