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The objective of thiswork is to employ themicromechanical approach for themodeling of the electrical resistivity
and of the conductivity of sandstone. This type of rock is considered as a mixture of solid mineral and porous
space filled fully or partially by conductive water. The Eshelby's solution of a spheroidal inclusion in a homoge-
neous matrix is employed. The differential effective mediummodel (DEM)with different concepts of the micro-
structure is developed for the calculation of the resistivity. The parametric study clarifies the impact of the
microscopic parameters on the macroscopic electrical properties. The simulations are compared with the classi-
cal empirical and theoretical approaches as well as with the laboratorymeasurements. The results show a strong
impact of themicrostructure (the shape of the pore, the presence of non-conductive fluids in the pore space, the
connectivity of conductive fluid) on the macroscopic resistivity and conductivity of sandstone. This approach
gives a link between the microscopic physical parameters of the rock and the macroscopic electrical parameters
such as the cementation exponent and the electrical formation factor.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The electrical resistivity is largely used to interpret the porosity, the
geo-pressure (Eaton, 1975), the mineralogy (Hill and Milburn, 1956),
the presence of hydrocarbon and the saturation degree of rocks (Ellis
and Singer, 2007; Pezard, 1990). As rock is composite porous material,
the electrical resistivity depends on its components and on its micro-
structure (pore shape, cement, saturation degree, conductivity of the
grains) (Chinh, 2000; Sen et al., 1981). The contrast between the resis-
tivity of water and that of the solid phases of rock induces a strong
porosity sensibility of the overall resistivity (Archie, 1942; Jackson
et al., 1978; Wyllie and Gregory, 1953).

Based on laboratory measurements on saturated sandstones, Archie
(1942) proposed an empirical formula that is widely used to character-
ize the impact of the porosity on the electrical resistivity: R/Rw = ϕ−m

where R, Rw, R/Rw and ϕ are the overall resistivity, the resistivity of
water, the relative dimensionless resistivity and the porosity of rocks
respectively. The exponent m, so-called cementation exponent
(Jackson et al., 1978; Wyllie and Gregory, 1953), is in the range of 1.3
to 4. Many theoretical attempts are realized to explain the Archie's
relationship, for instance capillary tube network models (Böttcher
et al., 1974; Wyllie and Rose, 1950), percolation theories (Kirkpatrick,
1973; Webman et al., 1975), effective medium theories (Landauer,
1978; Mendelson and Cohen, 1982; Milton, 1985; Norris et al., 1985;

Webman et al., 1977) and the self-similar model (Sen et al., 1981).
While the Archie's law is relatively simple in practice, the single
parameter m is inadequate to describe the complex impact of the
microstructure.

To deal with the problem of effective conduction properties and
effective elastic properties of composite materials, Eshelby (1957) de-
veloped an analytical solution of a single ellipsoidal inclusion in a homo-
geneous matrix. This solution is a generalization of the classical
Maxwell-Garnett and Bruggman theories (Bruggeman, 1935; Maxwell,
1904; Stroud, 1975) that were developed for the special cases of spher-
ical inclusion in homogeneousmatrix. Eshelby's solution is developed in
different ways to model the effective properties of composite materials
(Ortega et al., 2007). The DEMmicromechanical approaches are largely
used to model the physical properties of rocks (Dormieux et al., 2006;
Hornby et al., 1994). This model allows us the identification of the
effects of the microstructure on the macroscopic resistivity of the
composite. The DEM model starts by an initial continuum matrix and
add little by little inclusions into it. This model is effective when there
is a connected matrix phase (for example, compacted sandstone can
be considered as solid mineral matrix and pore inclusions).

In this study, the DEMmodel is employed, to dealwith the complex-
ity of themicrostructure, for the simulation of the electrical resistivity of
the sandstone. The impact of each microstructure parameter on the
overall electrical resistivity will be clarified. The simulations are com-
pared with the classical empirical and theoretical approaches as well
as with the laboratory measurements. This approach provides a link
between the microscopic physical parameters and the macroscopic
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electrical parameters such as the cementation exponent or the electrical
formation factor.

2. Theoretical framework

Considering the dilute problem of a single ellipsoidal inclusion in an
infinity homogeneous matrix (Fig. 1), the Eshelby's solution (Eshelby,
1957; Giraud et al., 2007) Eq. (1) gives the overall conductivity of the
mixture.

CDL ¼ Cm þ f i C i−Cmð ÞAm
i ð1Þ

where Cm, Ci and CDL are respectively the conductivity tensor
(2nd degree tensor) of the matrix, of the inclusion and of the dilute
mixture (Dormieux et al., 2006). fi is the volume fraction of the
inclusion and Ai

m the electric field localization tensor which is
calculated by Eq. (2). Where Eq. (1) is the second order unit tensor
and Pi

m is the Hill's tensor (Hill, 1965) which depends on the conduc-
tivity of the matrix and on the conductivity and the shape of the
inclusion.

Am
i ¼ 1þ Pi

m C i−Cmð Þ� �−1
: ð2Þ

Considering the transversely isotropic matrix, the conductivity
tensor of the matrix is decomposed to:

Cm ¼ CT
m 1−e3⊗e3ð Þ þ CN

me3⊗e3 ð3Þ

where the exponents T and N stand for the transversal and the normal
part respectively. e3 is the unit vector in the anisotropy evolution direc-
tion (Fig. 1). Similar decomposition of the conductivity tensor of the in-
clusion is:

C i ¼ CT
i 1−e3⊗e3ð Þ þ CN

i e3⊗e3: ð4Þ

Suppose that the matrix and the inclusion have the same anisot-
ropy evolution direction e3 which is also the normal vector of the
inclusion (penny shape case). In this case, the Hill tensor can be
decomposed as:

Pm
i ¼ PT 1−e3⊗e3ð Þ þ PNe3⊗e3: ð5Þ

The electric field localization tensor is then calculated by:

Am
i ¼ AT 1−e3⊗e3ð Þ þ ANe 3

⊗e3

AT ¼ 1
1þ PT CT

i −CT
m

� � ; AN ¼ 1
1þ PN CN

i −CN
m

� � :
ð6Þ

For the case of spheroidal transversely isotropic inclusion in trans-
versely isotropic matrix and the anisotropy evolution direction e3 is

the same for the inclusion and the matrix, the Hill tensor is calculated
by Giraud et al. (2007):

Pm
i ¼ PT 1−e3⊗e3ð Þ þ PNe 3

⊗e3

PN ¼ 1−2Q
CN
m

; PT ¼ Q
CT
m

ð7Þ

where the parameter Q is a function of the shape and of the anisotropy

of the inclusion which is characterized by the parameter ν ¼ c �
ffiffiffiffiffi
CN
i

CT
i

r
,

with c the aspect ratio of the inclusion (the ratio between the width
and the diameter of the plan of the inclusion) (Giraud et al., 2007). For
the case when ν b 1 the parameter Q is calculated by:

Q ¼ 1
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p
−ν arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−ν2

p

ν

 !

2 1−ν2
� �3=2 : ð8Þ

Fig. 2 shows the evolution of Qwhen ν varies from 0 to 1. The limits
when ν → 1 (spherical isotropic inclusion) gives Q = 1/3 and when
ν → 0 (disk-like inclusion) gives Q = 0.

The dilute solution becomes:

CDL ¼ CT
DL 1−e3⊗e3ð Þ þ CN

DLe 3
⊗e3

CT
DL ¼ CT

m þ f i CT
i −CT

m

� �
AT

; CN
DL ¼ CN

m þ f i CN
i −CN

m

� �
AN

ð9Þ

The DEM model consists of the use of the dilute solution directly
(Eq. (9)). It starts by the matrix and add little by little inclusion into it.

To account for the impact of the orientation distribution of the inclu-
sion, the average overall direction is necessary to calculate the macro-
scopic conductivity or the macroscopic resistivity of rock. In this study,
we consider the case of random distribution of the inclusions. The mac-
roscopic conductivity tensor is isotropic and depends on one
conductivity scalar which is calculated by Eq. (10).

C ¼
CN þ 2CT
� �

3
: ð10Þ

In the next sections, these micromechanical theories will be
employed to model the resistivity of saturated and unsaturated
sandstones.

3. Modeling of resistivity of saturated and compacted sandstone

We consider the case of compacted sandstone that is a mixture of
non-conductive solid matrix (relatively very high resistivity compared

Inclusion

Matrix

Fig. 1.Matrix-inclusion problem.
Fig. 2. Dependence of the parameter Q on the shape and on the anisotropy of the
inclusions.
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