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A better characterization of complex rock masses is essential in geotechnical engineering, as the empirical sys-
temswidely used for this purpose have significant limitations and do not provide adequate answers for risk anal-
ysis. Geostatistics offers a set of tools that allow not only predicting the rock mass properties, but also mapping
their heterogeneity at different spatial scales and quantifying the uncertainty in their actual values. In this
paper, two geostatistical approaches are compared for modeling the Rock Mass Rating (RMR), which is used to
geomechanically characterize the rock mass in geotechnical works. The first approach consists of the direct sim-
ulation of the RMR values, based on a Gaussian spatial random fieldmodel. In contrast, the second approach uses
the truncated Gaussian model to separately simulate the individual parameters of the RMR, which subsequently
are summed to obtain the final RMR value. The computation time, practical implementation, level of details and
post-processing outputs that can be obtained from both approaches are analyzed. Besides the RMRmapping and
associated uncertainty, the deformation modulus is subsequently obtained based on these maps together with
empirical expressions.
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1. Introduction

In the current practice of geotechnical works design, the
geomechanical parameters of the rock formations are set based on cam-
paigns of in situ and laboratory characterization works and tests. Ac-
cording to the results of these campaigns, a geotechnical zoning is
established and a set of geomechanical parameters is assigned to each
zone. This is a highly subjective exercise, but its output is of utmost im-
portance for the next stages of geotechnical design. However, this ap-
proach does not properly account for the intrinsic spatial variability
and high heterogeneities that can be found in many rock masses,
which can have a significant impact on the structure behavior. In this
sense, there is a lack of an approach that allows reducing the subjectivity
of geotechnical zoning and that explicitly considers the spatial variabil-
ity and heterogeneities many times present in rock masses.

The recourse to geostatistical models can be a mean to foster the
development of such an approach. Indeed, in these models, the
geomechanical parameters are viewed as outcomes (realizations) of spa-
tial random fields, the properties of which can be inferred from the avail-
able in situ measurements and laboratory tests. Kriging techniques
(Matheron, 1971) can be used to predict the values of the parameters of
interest at any specific location, based on the information available at

neighboring locations and on the spatial correlation structure of the un-
derlying random fields. These techniques aim to minimize the expected
squared error between predicted and true values, but, in return, they pro-
vide over-smoothed maps that do not reflect the actual variability of the
true parameters. To avoid this drawback, conditional simulation tech-
niques have been developed to construct numerical models that repro-
duce the spatial variability at all scales and allow a better understanding
of the rock mass heterogeneities (Journel, 1974; Chilès and Delfiner,
2012). Unlike kriging that provides a single prediction for each parameter
of interest, simulation yields asmany case scenarios as desired, which are
helpful to assess the uncertainty in the actual (unknown) parameter
values at any specific location or jointly over several locations.

Numerous authors already applied geostatistics to estimate or to simu-
late properties such as lithology faces (Rosenbaum et al., 1997), Rock Qual-
ity Designation (RQD) (Esfahani and Asghari, 2013; Ozturk and Simdi,
2014; Ozturk and Nasuf, 2002), Rock Mass Rating (RMR) (Ryu et al.,
2003; You, 2003; Oh et al., 2004; Stavropoulou et al., 2007; Exadaktylos
and Stavropoulou, 2008; Jeon et al., 2009; Egaña and Ortiz, 2013; Ferrari
et al., 2014), joint frequency (Ellefmo and Eidsvik, 2009) or Geological
Strength Index (GSI) (Ozturk and Simdi, 2014; Deisman et al., 2013).

Hereunder, the system used for simulation is the Rock Mass Rating
(RMR) proposed by Bieniawski (1989). This system allows classifying
the rock mass in five classes (very good, good, fair, poor, very poor)
using a continuous scale that varies from 0 to 100 obtained after
weighting six individual parameters regarding the rock mass and its
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discontinuities. The referred parameters are: a) Uniaxial compressive
strength of rock material (P1); b) RQD (P2); c) Discontinuity spacing
(P3); d) Condition of discontinuities (P4); e) Groundwater conditions
(P5); f) Orientation of discontinuities (P6). In this work, the sixth pa-
rameter (P6) will not be used because it does not depend only on the
characteristics of the rock discontinuities but also on their relation
with the structure and this is unknown. The RMR under consideration
is therefore the so-called basic RMR, which is obtained considering
only the contribution of parameters P1 to P5.

The next section presents two geostatistical approaches to simulate
the RMR, depending on whether one considers that the properties are
measured on a continuous quantitative scale or on a discrete scale. In
thefirst approach, themost straightforward andusual one, RMR is viewed
as a variablemeasured on a continuous scale (from0 to100) and is direct-
ly simulated with a multivariate Gaussian algorithm. In contrast, the sec-
ond approach ismore complete, as each one of the five parameters (P1 to
P5) is simulated and the results are then summed to obtain thefinalmap-
ping of RMR. A novelty of this second approach with respect to previous
works is the fact that the underlying parameters are considered as vari-
ables measured on a discrete scale, which better suits their nature as a
ranking and not as a continuous value, and that a specific geostatistical
model (truncated Gaussian model) is used for the purpose of simulation.
In Section 3, both approaches are applied to a case study and compared in
terms of implementation facility, accuracy and level of detail provided in
simulating the spatial distribution of RMR. Finally the simulated RMR is
converted into deformation modulus (Em) using empirical formulae.

2. Geostatistical simulation of RMR

2.1. First approach: direct simulation of RMR

In this approach, the RMR is viewed as a variable that continuously
varies from 0 to 100 and is simulated directly (Fig. 1a). To this end,
the multi-Gaussian random field model is used, through the following
steps (Chilès and Delfiner, 2012):

1) First, a representative distribution of the RMR values is calculated, by
weighting each data depending on the geometrical configuration of

the data locations. This procedure aims at down-weighting the data
that are spatially clustered, which contain redundant information
(Deutsch and Journel, 1998). In case of a regular sampling design,
the data can be assigned the same weights.

2) The RMR data are then transformed into data with a standard
Gaussian distribution, accounting for the previously calculated
declustering weights. These transformed data are associated with a
parent second-order stationary Gaussian random field, which is
fully characterized by its auto-correlation function or, equivalently,
by its variogram (Lantuéjoul, 2002).

3) The experimental variogram of the Gaussian data is computed and
subsequently fitted with a theoretical model. At this stage, the
study can be performed in one or more directions of space, in
order to identify a possible anisotropy and to better understand
the spatial behavior of the data.

4) A Gaussian random field is then simulated at the target locations,
conditionally to the available data (i.e., such that the values simulat-
ed at the data locations match the data values). In the present case
the turning bands algorithm (Emery and Lantuéjoul, 2006) is used
for simulation.

5) The simulated Gaussian values are back-transformed to the original
scale (RMR).

Similar approaches, which differ in the specific simulation
algorithm used at step (4), have been proposed by Ryu et al. (2003);
Jeon et al. (2009); Egaña and Ortiz (2013) and Ferrari et al. (2014),
among others, for the spatial prediction of RMR and for uncertainty
quantification.

2.2. Second approach: simulation of underlying parameters

The second approach is more innovative and consists in simulating
all five parameters assigned with their ratings, viewed as discrete vari-
ables (i.e., they only assume integer values). The sum of the simulated
parameters gives the final value for RMR.

For the parameter simulation, the truncated Gaussian model
(Armstrong et al., 2011) is used, which relies on the truncation of

Fig. 1. Flow charts for simulation under the multi-Gaussian model (Approach 1) (a) and the truncated Gaussian model (Approach 2) (b).
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