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This paper presents the analysis of the notch effect on granite and limestone fracture specimens. The research is
based on the results obtained in an experimental programme composed of 84 fracture specimens, combining the
two materials and 7 different notch radii varying from 0.15 mm up to 10 mm. The notch effect is analysed
through the evolution of the apparent fracture toughness and the application of the Theory of the Critical
Distances.
The results reveal a significant notch effect in the limestone, whereas the notch effect in the granite is negligible
for the range of notch radii analysed. Both observations are justified by the corresponding critical distance of the
material.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Onmany occasions, the load-bearing capacity of a structural compo-
nent is conditioned by the existence of stress risers. These may have
very different natures: cracks, notches, holes, welded joints, corners,
etc, all of them having different approaches when the corresponding
structural integrity is analysed. Rocks, whether they are naturally in
the crust or whether they are industrially exploited (e.g., quarries, ma-
sonry) or operated (e.g., slopes, foundations, boreholes), have to sustain
loads, and the presence of stress risers may play a key role in the corre-
sponding structural integrity.

This paper focuses on the fracture analysis of rocks containingnotch-
type defects and subjected to tensile stresses. Rock fracture mechanics
(e.g., Whittaker et al., 1992; Aliabadi, 1999; Jeager et al., 2007) conve-
niently addresses those situations where it may be assumed that the
analysed stress riser behaves as a crack-type defect, such as different
applications of rock cutting, hydraulic fracturing or underground exca-
vation. However, notch-type defects generate less demanding stress
fields than crack-like defects, so it may be overly conservative to pro-
ceed on the assumption that notches behave like sharp cracks, coupled
with the use of ordinary fracture mechanics. Numerous papers may be
found in the literature providing different models of the stress field
in the notch tip (e.g., Timoshenko and Goodier, 1951; Weiss, 1962;
Creager and Paris, 1967; Glinka and Newport, 1987; Pluvinage, 1998).

Basically, they all suggest a reduction in the stress acting perpendicular
to the notch plane, in such a way that the larger the notch radius
the more significant the stress reduction. This generally has direct
consequences on the resistant behaviour of structural components
(e.g., Neuber, 1958; Peterson, 1959; Pluvinage, 1998; Taylor, 2007;
Cicero et al., 2012; Madrazo et al., 2012). Thus, in most cases, a given
component has a higher load-bearing capacity and apparent fracture
toughness in notched conditions than in cracked conditions. However,
sometimes sharp notches behave like cracks and also blunt notches
may not penalise the load-bearing capacity (beyond the corresponding
reduction in the resistant section). Additionally, the terms “sharp”
and “blunt” are not absolute, but rather they depend on the material:
there are materials that present a clear notch effect (e.g., increase in
load-bearing capacity and apparent fracture toughness) for very small
notch radii (e.g., Madrazo et al., 2012), and there are others that require
a certain notch radius to develop a notch effect (e.g., Cicero et al., 2012).
This particular nature of notches has led to a great deal of researchwork
over the last fewdecades, aiming to provide specific tools for the assess-
ment of notched components, beyond the simple and generally over-
conservative application of ordinary fracture mechanics. However, the
analysis of these phenomena in rocks has been scarce, as detailed in
the following section.

Moreover, size effects are an important issue in rock fracture me-
chanics, given that thematerial behaviour (e.g., fracture toughness, ten-
sile strength) and the notch sensitivity may change with the size of the
component being analysed (Gjorv et al., 1977; Carpinteri, 1982, 1994;
Bazant, 1984, 1997, 2000; Shah, 1990; Dyskin, 1997; Borodich, 1999).
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Here, it should be noted that size effects are not directly addressed in
thiswork, so that the obtainedmaterial parametersmay not be transfer-
able to different scales (e.g., massive rocks).

With all this, Section 2 of this paper presents the Theory of Critical
Distances (TCD) as a tool for the assessment of notch-type defects in
rocks, Section 3 gathers the description of the materials and the exper-
imental programme, Section 4 provides the results and the correspond-
ing discussion and, finally, Section 5 presents the conclusions.

2. Theoretical background: analysis of notches and the Theory of
Critical Distances

The stress distribution at the region ahead of a notch tipmay be rep-
resented in a bi-logarithmic plot, as shown in Fig. 1, where three regions
can be distinguished (Niu et al., 1994; Pluvinage, 1998). Region I corre-
sponds to a nearly constant stress zone, region II is a transition zone, and
region III is a zone where stresses follow the expression:

σyy ¼
Kρ

2πrð Þα ð1Þ

where Kρ is the notch stress intensity factor andα is amaterial constant
for a given notch radius.

There are two main failure criteria in notch theory: the global frac-
ture criterion and local fracture criteria (Bao and Jin, 1993; Pluvinage,
1998). The global criterion establishes that failure occurs when the
notch stress intensity factor reaches a critical value, Kρ

c, which depends
on the notch radius and the material:

Kρ ¼ Kc
ρ ð2Þ

Kρ defines the stress and strain fields in the vicinity of the notch tip,
as shown in Eq. (1). This approach is analogous to that proposed by
linear–elastic fracture mechanics for the analysis of cracks, but its ap-
plication is very limited because of the lack of analytical solutions for
Kρ (in contrast with the case of KI, e.g., R6, 2001; BS7910, 2005;
API579-1/ASME FFS-1, 2007; FITNET FFS Procedure, 2008) or/and
standardised procedures for the experimental definition of Kρ

c (in con-
trast with the case of KIC, e.g., ASTM E, 1820-09e1, 2009).

Concerning local criteria, these are based on the stress-strain field on
the notch tip and have more applicability than global criteria from a
practical point of view. Amongst them, those criteria belonging to the
TCD stand out. The Theory of Critical Distances (TCD) is essentially a
group ofmethodologies, all ofwhich use a characteristicmaterial length
parameter (the critical distance, L) when performing fracture assess-
ments (Taylor et al., 2004; Taylor, 2007). The origins of the TCD date
back to the middle of the twentieth century, with the works of Neuber

(1958) and Peterson (1959), but it has been in the last years, driven
by the proliferation of finite element stress analyses, that this theory
has been scientifically analysed and applied to different types of mate-
rials (metals, ceramics, polymers and composites), failure or damage
processes (basically fracture and fatigue) and conditions (e.g., linear-
elastic vs. elastoplastic) (e.g., Taylor and Wang, 2000; Taylor, 2001;
Susmel and Taylor, 2003; Taylor et al., 2004; Taylor, 2007; Susmel and
Taylor, 2010; Cicero et al., 2012; Madrazo et al., 2012; Cicero et al.,
2013).

The above-mentioned critical distance is usually referred to as L and
its expression is:

L ¼ 1
π

KIC

σ0

� �2
ð3Þ

where KIC is the material fracture toughness and σ0 is a characteristic
material strength parameter named the inherent strength, usually larg-
er than the ultimate tensile strength (σu), which requires calibration.
Only in those situations where there is a linear–elastic behaviour at
both themicro and themacroscale (e.g., fracture of rocks) does σ0 coin-
cide with σu.

Amongst the different methodologies included within the TCD, two
of them are particularly simple to apply: the Point Method (PM), also
known as the Stress Method, and the Line Method (LM). Both of these
are based on the stress field at the defect tip. Other methodologies,
such as Finite Fracture Mechanics (FFM) and the Imaginary Crack
Method are based on the stress intensity factor and their application is
not so straightforward. In any case, as stated by Taylor (2007), the pre-
dictions made by all these methodologies are very similar, so that only
the PM and the LM, those with a far simpler application, will be consid-
ered here.

The PointMethod (PM) is the simplestmethodology, and it assumes
that fracture occurs when the stress reaches the inherent strength (σ0)
at a certain distance from the defect tip, rc. It considers that thematerial
has linear–elastic behaviour, and from the stress field in a crack tip
at failure (Anderson, 2004; Taylor, 2007) and the definition of L
(Eq. (3)), it is straightforward to demonstrate that rc is L/2:

KICffiffiffiffiffiffiffiffiffiffi
2πrc

p ¼ σ0⇒rc ¼
1
2π

KIC

σ0

� �2
¼ L

2
ð4Þ

The PM failure criterion is, therefore:

σ
L
2

� �
¼ σ0 ð5Þ

On the other hand, the Line Method (LM) assumes that fracture oc-
curs when the average stress along a certain distance, d (starting from
the defect tip), reaches the inherent strength, σ0. Again, from the stress
field in a crack tip at failure and the definition of L, it is easy to demon-
strate that d is equal to 2 L:

1
d

Zd

0

KICffiffiffiffiffiffiffiffi
2πr

p dr ¼ 2ffiffiffiffiffiffi
2π

p KIC

d1=2
¼ σ0⇒d ¼ 4

2π
KIC

σ0

� �2
¼ 2L ð6Þ

Therefore, the LM failure criterion is:

1
2L

Z2L

0

σ rð Þdr ¼ σ0 ð7Þ

The TCD, and then the PM and the LM, allows the fracture assess-
ment of components with any kind of stress riser to be performed.
As an example, when using the PM it would be sufficient to perform
two fracture tests on two specimens with different types of defectsFig. 1. Schematic showing the stress distribution at a notch tip (bi-logarithmic).
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