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a b s t r a c t

We consider the boolean quadratic programming problem with generalized upper bound constraints
(BQP-GUB) which subsumes the well-known quadratic semi-assignment problem. BQP-GUB has appli-
cations in engineering, production planning and biology. We present various complexity results on the
problem along with different metaheuristic algorithms. Results of extensive experimental analysis are
presented demonstrating the efficacy of our proposed algorithms.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let = { … }E n1, 2, , be a finite set and for each ∈i E a profit ci is
given. Also for each ( ) ∈ ×i j E E, , a profit qij is prescribed. The n�n
matrix = ( )Q qij is called the quadratic profit matrix and the vector

= ( … )c c c c, , , n1 2 is called the linear profit vector. Let …S S S, , m1 2 be a
partition of E, i.e. …S S S, , m1 2 are mutually disjoint subsets such
that = ∪ =E Si

m
i1 . Then the boolean quadratic programming problem

with generalized upper bound constraints (BQP-GUB) can be stated
as follows:

∑ ∑ ∑

∑

( ) = +

= = …
( )

= = =

∈

f x c x q x x

x k m

Maximize

Subject to 1, for 1, 2, , .
C1

j

n

j j
i

n

j

n

ij i j

j S
j

1 1 1

k

∈ { } = … ( )x j n0, 1 , for 1, 2, , . C2j

BQP-GUB is a generalization of the quadratic semi-assignment
problem (QSAP) studied by various authors. In fact, if | | =S mk for all

= …k m1, 2, , and =n m2, BQP-GUB reduces to the QSAP. Also, it is

possible to formulate BQP-GUB as a QSAP by introducing O(n)
additional variables (if necessary). In this sense, BQP-GUB and
QSAP are equivalent. However, the general form of BQP-GUB
presented here allows additional flexibility in terms of presenta-
tion, modeling, complexity and in identifying polynomially sol-
vable special cases.

Applications of the QSAP model include register allocations in
optimized compiler design [11,16,29], allocation of assets to tasks
[12], co-clustering of image segments [33], Rotamer assignments
in protein folding [15], Correlation clustering [7], scheduling
[6,23,30,32], hub location [25], and metric labeling [19]. Thus each
of these problems are applications of BQP-GUB as well and this
rich applications base is one of the major motivations for our
study.

A graph theoretic interpretation of BQP-GUB can be given as
follows: let = ( )G V A, be an undirected graph. The vertex set

= { … }V n1, 2, , is partitioned into m subsets …S S S, , , m1 2 . For each
edge ( ) ∈i j A, a profit cij is prescribed. Then the cluster restricted
maximum induced subgraph problem (CMISP) is to find a subset S
of V such that S contains exactly one element from each

= …S k m, 1, 2, ,k and the sum of the weights of the edges in the
subgraph of G induced by S is maximized (see Fig. 1). By choosing

=q cij ij if ( ) ∈i j A, and =q 0ij if ( ) ∉i j A, , CMISP can be solved as a
BQP-GUB.

In the definition of CMISP if we include the additional restric-
tion that the subgraph induced by S must be a clique, we get
cluster restricted maximum clique problem (CMCP). By choosing

=q cij ij if ( ) ∈i j A, and = −q Mij if ( ) ∉i j A, , where M is a large
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positive number, we can solve CMCP as a BQP-GUB. The example
given in Fig. 1 also serves as an example for CMCP.

Another problem closely related to BQP-GUB is the un-
constrained boolean quadratic programming problem (UBQP)
studied by various authors [22,34]. It is possible to formulate BQP-
GUB as a UBQP by modifying qij values appropriately. Thus such a
reformulation is a viable approach to solve BQP-GUB by making
use of powerful UBQP solvers. However, it is generally accepted
that specialized algorithms, exploiting the underlying problem
structure, are likely to perform better than general purpose algo-
rithms. Our experimental analysis confirms this assertion.

The problem BQP-GUB (in the form of QSAP) was introduced by
Greenberg [14] in 1969. Since then several researchers have stu-
died the problem in various contexts. Polynomially solvable spe-
cial cases of QSAP were investigated in [2,10], lower bounds and
reduction techniques were studied in [3,4], structure of the poly-
tope associated with a 0-1 linear programming formulation of
BQP-GUB was studied in [28] and a tabu search heuristic was
proposed in [9] along with some experimental results involving
small size problems. Surprisingly, a systematic and detailed ana-
lysis of heuristic algorithms for this problem is not available.
Through this study, we expect to reduce this gap.

In this paper, we first conduct a preliminary analysis of the
problem complexity to separate easy and hard special cases. BQP-
GUB is trivial if | | =S 1k for all = …k m1, 2, , . Interestingly, if | | ≤S 2i
for all i, BQP-GUB is shown to be NP-hard. It remains NP-hard,
even if the rank of Q is 1. Testing if the problem has a unique

optimal solution is also NP-hard. If ( )=
μ

m O nlog
log s

, where μs is the

geometric mean of | | | | … | |S S S, , , m1 2 then the problem can be solved
in polynomial time. Also, BQP-GUB can be solved by a simple
greedy algorithm if Q is a sum matrix. We then develop various
heuristic algorithms for the problem based on local search, vari-
able neighborhood search, tabu search, iterated tabu search,
GRASP and iterated greedy. Results of extensive experimental
analysis carried out using these algorithms on benchmark pro-
blems are also reported. In addition, we compared our algorithms
against the best known heuristic for UBQP by reformulating BQP-

GUB as a UBQP. Our specialized algorithm based on iterated tabu
search (ITS) outperformed all other approaches we tested, in-
cluding the approach of reformulating BQP-GUB as a UBQP and
solving the resulting UBQP using state-of-the-art solvers. The ad-
vantage of ITS is even more pronounced for large scale problems.

The paper is organized as follows. In Section 2, we discuss
computational complexity of BQP-GUB and present some poly-
nomially solvable special cases. Various heuristic algorithms are
presented in Section 3. Section 4 deals with analysis of experi-
mental results using our algorithms. Finally, concluding remarks
are presented in Section 5.

2. Complexity and solvable cases

Since QSAP is NP-hard [5], BQP-GUB is clearly NP-hard. If | | =S 1k

for = …k m1, 2, , , then BQP-GUB is trivial since xj¼1 for
= …j n1, 2, , is the unique optimal solution. We now observe that

a slight modification of this trivial case leads to a hard instance of
BQP-GUB.

Theorem 1. BQP-GUB is strongly NP-hard even if | | ≤S 2k for all
= …k m1, 2, , .

Proof. We reduce an instance of UBQP to an instance of BQP-GUB
satisfying the conditions of the theorem. Note that UBQP is the
optimization problem:

∑ ∑( ) = ′
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where ′qij is a given real number for ∈i j E, . Consider an instance of

UBQP with cost matrix ( )′ = ′
×

Q qij n n
. Now construct an instance of

BQP-GUB on 2n variables …x x x, , n1 2 2 with the quadratic cost ma-
trix = ( ) ×Q qij n n2 2 such that

=
′ = …

⎪

⎪⎧⎨
⎩q

q i j nfor , 1, 2, ,

0 otherwise.
ij

ij

Define = { + }S i n i,i for = …i n1, 2, , , and set cj¼0 for
= …j n1, 2 , 2 . The resulting BQP-GUB instance has 2n solutions

and there is a one-to-one correspondence between solutions of
this instance and the solutions of UBQP such that the objective
function values of the corresponding solutions are the same. The
result now follows from the strong NP-completeness of UBQP. □

It may be noted that the reduction discussed in the above proof
preserves approximation ratios. This translates non-approxim-
ability results available for UBQP into non-approximability results
for BQP-GUB even when | | ≤S 2k for all = …k m1, 2, , .

In the proof of Theorem 1, we showed that a UBQP with n
variables can be solved as a BQP-GUB with n2 variables. We now
observe that BQP-GUB with n variables can be formulated as UBQP
with n variables, yielding equivalence between these two
problems.

Choose α > + ∑ ∑ { }= = q1 max , 0i
n

j
n

ij1 1 . Then BQP-GUB is equiva-

lent to solving the problem
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But this is equivalent to the UBQP where

Fig. 1. An example of a graph with portioned node set and =c 1ij for all (i,j) in the
edge set. The node set { }2, 3, 4 gives an optimal solution to the resulting CMISP.
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