
Iterated greedy algorithms for the blocking flowshop scheduling
problem with makespan criterion

M. Fatih Tasgetiren a,n, Damla Kizilay a, Quan-Ke Pan b, P.N. Suganthan c

a Industrial Engineering Department, Yasar University, Izmir, Turkey
b Huazhong University of Science and Technology, Wuhan, PR China
c School of Electronics, Nanyang Technological University, Singapore

a r t i c l e i n f o

Article history:
Received 6 July 2015
Received in revised form
1 April 2016
Accepted 2 July 2016
Available online 12 July 2016

Keywords:
Meta-heuristics
Blocking flowshop
Iterated greedy algorithm
Variable neighborhood search
Constructive heuristics

a b s t r a c t

Recently, iterated greedy algorithms have been successfully applied to solve a variety of combinatorial
optimization problems. This paper presents iterated greedy algorithms for solving the blocking flowshop
scheduling problem (BFSP) with the makespan criterion. Main contributions of this paper can be sum-
med up as follows. We propose a constructive heuristic to generate an initial solution. The constructive
heuristic generates better results than those currently in the literature. We employ and adopt well-
known speed-up methods from the literature for both insertion and swap neighborhood structures. In
addition, an iteration jumping probability is proposed to change the neighborhood structure from in-
sertion neighborhood to swap neighborhood. Generally speaking, the insertion neighborhood is much
more effective than the swap neighborhood for the permutation flowshop scheduling problems. Instead
of considering the use of these neighborhood structures in a framework of the variable neighborhood
search algorithm, two powerful local search algorithms are designed in such a way that the search
process is guided by an iteration jumping probability determining which neighborhood structure will be
employed. By doing so, it is shown that some additional enhancements can be achieved by employing
the swap neighborhood structure with a speed-up method without jeopardizing the effectiveness of the
insertion neighborhood. We also show that the performance of the iterated greedy algorithm sig-
nificantly depends on the speed-up method employed. The parameters of the proposed iterated greedy
algorithms are tuned through a design of experiments on randomly generated benchmark instances.
Extensive computational results on Taillard’s well-known benchmark suite show that the iterated greedy
algorithms with speed-up methods are equivalent or superior to the best performing algorithms from
the literature. Ultimately, 85 out of 120 problem instances are further improved with substantial mar-
gins.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Permutation flowshop scheduling (PFSP) has been extensively
studied in the literature and has important applications in man-
ufacturing and service systems [1–4]. In the traditional permuta-
tion flowshop scheduling problem, n jobs are processed on m
machines in the same permutation, and work-in-process in-
ventory is allowed since there are infinite buffer capacities
amongst consecutive machines. In other words, jobs are allowed to
be waiting for their next operations. However, if there does not
exist any storage capacity amongst machines, the traditional PFSP
become a blocking flowshop scheduling problem (BFSF) [5]. In this
case, a job cannot leave the machine unless the next machine is

free. The BFSP has important applications in industry which can be
found in [5,6]. A comprehensive review on flowshop scheduling
with blocking and no-wait constraint can be found in Hall and
Sriskandarajah [7].

In this paper, we consider the BFSP with the makespan criter-
ion. With the notation of Graham et al. [8], this problem is denoted
as F blocking C/ /m max. About the computational complexity of the
problem, even though Gilmore and Gomory’s algorithm [9] can
solve it to optimality when the number of machines is two (=)m 2 ,
it is proven to be NP-Hard by Hall and Sriskandarajah [7] when

>m 2. For this reason, heuristic approaches should be considered
for scheduling a large number of jobs, which is commonly re-
quired in industry.

Due to the NP-Hard nature of the problem, constructive heur-
istic and meta-heuristic algorithms have been developed for sol-
ving the BFSP. Regarding the constructive heuristics, a profile
fitting (PF) heuristic is developed by McCormick et al. [10] in order

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

http://dx.doi.org/10.1016/j.cor.2016.07.002
0305-0548/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: fatih.tasgetiren@yasar.edu.tr (M.F. Tasgetiren).

Computers & Operations Research 77 (2017) 111–126

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.07.002
http://dx.doi.org/10.1016/j.cor.2016.07.002
http://dx.doi.org/10.1016/j.cor.2016.07.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.07.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.07.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.07.002&domain=pdf
mailto:fatih.tasgetiren@yasar.edu.tr
http://dx.doi.org/10.1016/j.cor.2016.07.002
http://dx.doi.org/10.1016/j.cor.2016.07.002

to solve sequencing problems with blocking to minimize cycle
time. The PF heuristic basically tries to sequence the next job
having minimum idle and blocking times on machines. Another
approach is presented by Leisten [11] in order to deal with flow-
shop scheduling problems with finite and unlimited buffers to
maximize the buffer usages and to minimize the machine blocking
times. However, the heuristic developed in [11] was not able to
yield better solutions than the NEH heuristic, which is initially
proposed in [12] to solve the traditional PFSP. Based on the ma-
kespan properties defined by Ronconi and Armentano [13], Ron-
coni [6] proposed a note on constructive heuristics and developed
three constructive heuristics, called minmax (MM), MM combined
with NEH (MME), and PF combined with NEH (PFE), respectively
for the BFSP with the makespan criterion. In the light of compu-
tational analysis, it was demonstrated that the MME and PFE
heuristics were superior to the NEH algorithm in problems with
up to 500 jobs and 20 machines. Abadi et al. [14] proposed an
improvement heuristic for minimizing cycle time in blocking
flowshop which can be employed for the BFSP with the makespan
criterion. Ronconi and Henriques [15] tried to minimize the total
tardiness in a flowshop with blocking and presented some con-
structive heuristics providing promising results for the problems
considered. In addition to above, some effective heuristics based
on PF approach were proposed in Pan and Wang [16]. These PF
based heuristics are also inspired from LR heuristic proposed by
Liu and Revees [17] for the PFSP with total flowtime criterion. They
combined PF heuristic with the partial NEH implementation and
called the heuristics as PF_NEH(x), WPF_NEH(x) and PW_NEH(x),
where x is the number of sequences generated by considering the
first x number of jobs in the initial order of jobs. In order to retain
good characteristics of the PF heuristic, the NEH heuristic is ap-
plied to only the last δ = 20 jobs. Their PW_NEH(5) heuristic was
substantially better than NEH, MME, PFE, WPFE and PWE heur-
istics from the literature.

Regarding the meta-heuristic algorithms, a genetic algorithm
(GA) was presented in Caraffa et al. [18]. Ronconi [19] presented a
branch and bound algorithm to report the upper bounds for Tail-
lard’s benchmark suite [20]. Grabowski and Pempera [21] pre-
sented a fast tabu search. Wang et al. [22] proposed a hybrid ge-
netic algorithm. Liu et al [23] developed a hybrid particle swarm
optimization algorithm. Qian et al. [24] developed a differential
evolution algorithm. Liang et al. [25] proposed a multi-swarm
particle swarm optimization algorithm. Harmony search algo-
rithms were developed by Wang et al. [26,27]. Wang et al. [28]
proposed a hybrid discrete differential evolution algorithm
(HDDE). Ribas et al. [29] proposed an iterated greedy algorithm
(IGA) with excellent results, where all best known solutions were
further improved. Wang et al. [30] developed a three phase algo-
rithm. effective heuristics with a local search were also presented
in [16]. A revised artificial immune algorithm (RAIS) was presented
by Lin and Ying [31], where an IG algorithm was also developed. A
memetic algorithm (MA) was presented by Pan et al. [32]. A
competitive variable neighborhood search (SVNS) algorithms were
proposed by Ribas et al. [33] and all the best known solutions
reported in [29] were further improved by the SVNS algorithms.

Main contributions of this paper can be summarized as follows.
We propose a constructive heuristic with results, which are su-
perior to those in the current literature. For the PFSP and its var-
iants with the makespan criterion, the reduction methods of
computational complexity for the insertion neighborhood were
proposed by Grabowski and Pempera [5], Taillard [34], Nowicki
and Smutnicki [35], Smutnicki [36], and Nowicki [37]. By inspiring
from these reduction techniques, Wang et al. [28] developed a
speed-up method to evaluate the whole insertion neighborhood
for the BFSP with the makespan criterion. We show in this paper
that this speed-up method is extremely effective in solving the

BFSP with the makespan criterion. Along with it, we also employ a
simple speed-up method from Lia et al. [38], for the swap neigh-
borhood, which is adapted for the BFSP with the makespan cri-
terion. In addition, an iteration jumping probability is proposed to
jump from one neighborhood structure to another one; hence
resulting in a variable neighborhood search algorithm. Instead of
employing these two neighborhood structures in a framework of
the variable neighborhood descend (VND) algorithms [39], we
present two powerful local search algorithms, where the search
process is guided by an iteration jumping probability determining
which neighborhood structure will be employed. By means of a
jump to the swap neighborhood with a small probability, it is
shown that some additional enhancements can be gathered while
retaining the effectiveness of the insertion neighborhood. We also
show that the performance of the iterated greedy algorithm sig-
nificantly depends on the speed-up method employed. The para-
meters of the iterated greedy algorithms are tuned through a de-
sign of experiments approach on randomly generated benchmark
instances. Extensive computational results on Taillard’s well-
known benchmark suite show that the proposed iterated greedy
algorithms with speed-up methods are equivalent or superior to
the best performing algorithms from the literature. Especially, we
show that iterated greedy algorithms proposed are substantially
and significantly better than SVNS algorithms, which are recently
proposed by Ribas et al. [33]. Ultimately, 85 out of 120 problem
instances are further improved with substantial margins.

The rest of the paper is organized as follows. In Section 2, the
blocking flow shop scheduling problem with speed-up methods is
formulated. Section 3 presents the IG algorithms with iteration
jumping, VND and SVNS variants. Section 4 presents the design of
experiment approach for parameter tuning. Extensive computa-
tional results and comparisons are provided in Section 5. Finally,
Section 6 gives the concluding remarks.

2. Blocking flow shop scheduling problem

In the blocking flow shop scheduling problem, n jobs form the
set { }= …J n1, 2, , have to be processed on m machines from the

set { }= …M m1, 2, , with the same permutation on each machine
without any intermediate buffer. Each job j has a sequence of m
operations. Each operation oj k, has a processing time denoted as
p .j k, The setup time is assumed to be included in the processing
time. Only one job can be processed on each machine. Since the
waiting times are not allowed in the flowshop due to the no in-
termediate buffers, jobs cannot leave machines after finishing
their operations until next machines are free. In other words, if the
next machine is busy, then the current job on the machine must be
blocked since there is no intermediate buffer amongst machines.
The goal is to obtain a permutation which will be applied to each
machine and the makespan is to be minimum. Given a job per-
mutation, π π π π={ … }, , , n1 2 , the departure time ej k, of job πj on
machine k can be computed by following Ronconi [6] as follows:

= ()e 0 11,0

= + = … − ()π−e e p k m1, , 1 2k k k1, 1, 1 ,1

= = … ()−e e j n2, , 3j j,0 1,1

M.F. Tasgetiren et al. / Computers & Operations Research 77 (2017) 111–126112

Download English Version:

https://daneshyari.com/en/article/474556

Download Persian Version:

https://daneshyari.com/article/474556

Daneshyari.com

https://daneshyari.com/en/article/474556
https://daneshyari.com/article/474556
https://daneshyari.com

