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a b s t r a c t

This paper describes a new very efficient branch-and-bound exact maximum clique algorithm BBMCSP,
designed for large and massive sparse graphs which appear frequently in real life problems from
different fields.

State-of-the-art exact maximum clique algorithms encode the adjacency matrix in full but when
dealing with sparse graphs some form of compression is required. The new algorithm is based on a
leading bit-parallel non-sparse solver but employs a novel sparse encoding for the adjacency matrix.
Moreover, it also improves on recent optimizations proposed in literature for the sparse case such as
core-based bounds.

Reported results show that it is several orders of magnitude better than state-of-the-art. Moreover, a
number of real networks with many millions of nodes are solved in a few seconds.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A simple undirected graph G¼ ðV ; EÞ consists of a finite set of
vertices V ¼ v1; v2;…; vnf g and edges E made up of pairs of distinct
vertices ðEDV � VÞ. Two vertices are said to be adjacent (or
neighbors) if they are connected by an edge. For any vertex
vAV , NðvÞ(or NGðvÞ when the graph is explicitly specified) is the
neighbor set of v in G. Any subset of vertices UDV induces a new
subgraph G½U� with vertex set Uand edge-set G½E�DE such that all
its edges have both endpoints in U.

In a complete subgraph, or clique, all vertices are pairwise
adjacent. For a given graph, finding a clique of a fixed size k is a
well known and deeply studied NP-complete problem referred to
as k-clique [1]. The corresponding optimization problem is the
maximum clique problem (MCP), which has the goal of finding the
largest possible clique. The size of the maximum clique ωðGÞ is
known as the clique number of the graph.

The vertex coloring problem (VCP) is another well known NP-
complete problem very much related to the maximum clique
problem (MCP); the VCP is well known to be an upper bound of
the MCP. The goal of VCP is to find a proper color number

assignment cðvÞ : V-ℕ with the minimum number of colors.
A proper assignment is such that all pairwise adjacent vertices
have different color numbers, i.e. v2ANðv1Þ ) cðv2Þacðv1Þ. The
notation CðGÞ ¼ C1;C2;…;Ck

� �
in the paper refers to a proper

coloring of size CðGÞ
�� ��¼k (also known as a k-coloring), and color

class Ci is the set of vertices with color number i. The size of a
solution to the vertex coloring problem is known as the chromatic
number of the graph χðGÞ.

Besides its theoretical value as an NP-hard problem, the max-
imum clique problem is known to have direct applications in a
wide spectrum of fields such as data association problems appear-
ing in bioinformatics and computational biology [2,3], computer
vision [4] and robotics [5]. Typically the association problem is
reduced to a maximum clique search in a correspondence graph
which subsumes the matching criteria between two entities.

With the upsurge of web technologies there has also been
renewed interest in cliques to capture structure over massive
networks. For example, in social networks a clique can identify a
group of cooperating agents (e.g. a terrorist cell); in the World
Wide Web, cliques or quasi-cliques can help to detect frequently
visited pages concerning a certain topic, clique kernels help to
identify communities and so on.

In many of the above mentioned applications, networks tend to
be large and sparse because relational models in life frequently
involve many elements and show some form locality in their
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structure. The term large is employed rather loosely in literature;
for example, Stanford's large network data set SNAP1 contains real
graphs ranging from 4000 to 96 million vertices. Graphs with
millions of vertices are also referred to as massive ormonster in the
same informal way. Of interest to this work is the problem of
finding a maximum clique in large and massive sparse graphs.

Exact algorithms for maximum cliques are profuse. State-of-
the-art are currently branch-and-bound solvers which use approx-
imate coloring to compute bounds for each subproblem, a very
active line of the research in the last decade. The theoretical
foundation for this is that the inequality ωðGÞrχðGÞrΔGþ1 – ΔG
denotes maximum graph degree – holds for any graph and follows
trivially from [6]. Notable examples of this family of solvers in
the past are [7,8] and in recent years [9-16]. [17] is a com-
parative study which claims that bit-parallel BBMC [13,14] per-
forms best for a number of small and middle size graphs from
public benchmarks; MCS [12] was the other most successful
algorithm reported in that work.

The BBMC kernel uses bitstrings to encode the problem domain
in such a way that critical operations, such as subproblem gen-
eration and coloring, are reduced to efficient bit masks. BBMC's
careful design reduces bit-twiddling (e.g. vertex enumeration in a
bit-encoded vertex set) as much as possible, something which is
critical for overall efficiency.

Only very recently a number of improvements have appeared
connected with more sophisticated approximate coloring techni-
ques: BBMCL [15] improves BBMC using a selective coloring
scheme and IncMaxCLQ [16] encodes each colored subproblem
to MaxSAT and uses logical inferences to find subsets of vertices
assigned k colors which cannot possibly make part of a k-clique
(referred to as inconsistent subsets). In a similar vein is a variant of
BBMC denoted as infra-chromatic which searches for a simpler
form of inconsistent subsets without resorting to logical reasoning
[18]. We note, however, that these more sophisticated techniques
are not useful for massive sparse graphs because it is known that the
extra effort spent in pruning is not worthwhile in structures with low
density [14].

Many approximate methods for finding maximum cliques in
massive graphs have been proposed in literature, as in [19-21].
Exact methods, however, are much less common as the problem
quickly becomes intractable as the size of graphs increases. Here,
the main line of research has focused on exploiting multi-core
parallelism using a state-of-the-art single-core algorithm, such as
BBMC in [22], for individual subproblems. Each subproblem is the
workload of a different task.

Additional to these attempts is research on specific optimiza-
tion techniques for massive sparse graphs. Particularly relevant is
the fact that the majority of existing exact algorithms encode the
adjacency matrix in full, which is the wrong approach for these
types of networks. Two publicly available algorithms stand out to
the best of our knowledge: PMC [23] and FMC [24]. Both use an
adjacency list representation of the network and unroll the first
level of the search tree to enforce early pruning. However, while
FMC uses degree-based bounds PMC employs the much stronger
notion of core as well as a more sophisticated recursive search
procedure similar to the one used by BBMC. Moreover, the PMC
web-site reports an excellent performance over a large data set of
real graphs2, so it is considered as reference in this paper.

Motivated by the above considerations this paper describes a
new very efficient bit-parallel algorithm which uses a novel
compressed representation of the bit-encoded adjacency matrix
used by BBMC. Moreover, it also improves on the ideas described

by PMC and adapts them to the new representation. Reported
results in the paper show improvements of up to several orders of
magnitude over a set of 276 publicly available real graphs.

The remaining part of the paper is structured as follows:
Section 2 covers notation and a detailed outline of the reference
bit-parallel exact maximum clique algorithm starting point of this
research. Section 3 describes the new algorithm. Section 4 reports
empirical validation and finally Section 5 presents some conclu-
sions and summarizes contribution.

2. Previous work on exact bit-parallel maximum clique
algorithms

This section gives a detailed outline of a state-of-the-art bit-
parallel exact maximum clique solver. The description is some-
what extensive but presents the necessary background to under-
stand the contribution of this paper.

2.1. Bit-parallelism

In this paper we take the view of a bitstring Bn as an encoding
of a subset S of the set [n]¼{0, 1, 2, 3, …, n�1} such that its
elements map to 1-bits in Bn, i.e. for every iAS, Bn½i� ¼ 1. For exam-
ple, the bitstring encoding of subset S¼ 1;3;5;7f g of 0;1; 2;…;f
7gis 01010101. The natural data structure to encode Bn is not an
array of bits, but an array of blocks of bits having the size of the
register word w (typically 32 or 64 in today's commercial compu-
ters; unless otherwise stated w¼64 is assumed).

By bit-parallelism we refer to the ability of a CPU to process
simultaneously bitwise operations over data in two registers. If the
data has bitstring semantics this can be viewed as a parallel computa-
tion with a speedup of O(w) with respect to a classical encoding.

Ground operations for bitstrings are LSB(Bn), the index of the
least significant bit in Bn, MSB(Bn), the index of the most significant
bit in Bn and POPCNT(Bn), the total number of elements (1-bits) in
Bn. In the case of a set SD ½64�, efficient implementations for these
operators are available in many processors and accessible to
programmers via assembly code or specific higher level libraries.
The extension to Bn, n464, requires ad-hoc software solutions
with heavy optimization. One such solution, very much related to
this paper, is the Cþþ BITSCAN library used by BBMC [25].

2.2. The bit-parallel framework

An efficient bit-parallel encoding for the exact maximum clique
problem was first described in BBMC. The main data structures are
the following:

– Input graph G¼ ðV ; EÞ, Vj j ¼ n: an array of n bitstrings Bn, each
corresponding to a row of the adjacency matrix A. If Bi

n is the
encoding of Ai then each 1-bit mapped to [n] in Bi

n corresponds
to a vertex adjacent to i.

– A set of vertices UDV: a bitstring Bn in which each 1-bit is the
index of the corresponding vertex in [n]. Vertices not in U will
always have their corresponding bit set to 0 in Bn.

– An induced graph G½U�: a bitstring Bn representing the set of
vertices in U, together with A. Vertices not in Uwill always have
their corresponding bit to 0 in Bn.

One important bottleneck operation for bit-parallel maxi-
mum clique is vertex-set enumeration. Unfortunately, maximum
clique requires enumeration both during branching (the vertices
of each subproblem) and coloring (the candidate vertices to
enlarge the current color class). Implementation details related

1 http://snap.stanford.edu/data/.
2 https://www.cs.purdue.edu/homes/dgleich/codes/maxcliques/mctables.html
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