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a b s t r a c t

In the international air cargo business, freight is usually consolidated into containers, called Unit Load
Devices (ULDs). The transportation charge of a ULD depends on whether the total weight exceeds a
certain threshold, called the pivot weight. If the total load tendered by a freight forwarder is less than the
pivot weight, it gets charged at the under-pivot rate. Any portion of the load that exceeds the pivot
weight is charged at the over-pivot rate. This scheme is adopted for safety reasons to avoid the
overloading of ULDs. We formulate a mixed integer program, and propose four solution methodologies
for the air-cargo consolidation problem under the pivot-weight scheme (ACPW). These are exact solution
approaches based on branch-and-price, a best-fit decreasing loading heuristic, and two extended local
branching heuristics (a multi-local tree search and a relaxation-induced neighborhood search). The local
branching heuristic with relaxation-induced neighborhood search is found to outperform other
approaches in terms of solution quality and computational time. Problems with up to 400 shipments
and 80 containers are solved to within 3.4% of optimality in less than 20 min.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The operations of an airfreight forwarder include making
capacity reservations with cargo airlines, consolidating shipments,
tendering freight to the airline, and breaking bulk for the delivery
to the final destination. Instead of reserving in terms of chargeable
weight, large forwarders sometimes reserve a number of contain-
ers from airlines. These containers are called Unit Load Devices
(ULDs). Airlines offer several types of containers with different
capacity and cost characteristics.

The air-cargo consolidation problem under the pivot-weight
scheme (ACPW) is characterized by a pivot weight and two unit
costs, respectively, the under-pivot rate and the over-pivot rate. The
pivot weight Uj is a weight threshold of a ULD, below which the
cargo is charged the under-pivot rate. Any weight that falls between
the pivot weight and the maximum capacity of the ULD is charged
at a special unit rate, higher than the pivot rate, called the over-pivot
rate. In addition, there is a fixed reservation cost for each ULD. Faced
with this pricing scheme, a forwarder is interested in finding the
optimal consolidation decisions to minimize total cost. This pro-
blem is commonly encountered by large freight forwarders.

Note that the pivot-weight scheme discussed here is not a
discount. Airlines price in this way to prevent shippers from over-
loading ULDs. The over-pivot cost can be seen as an incremental

penalty, rather than a discount. The well-known “bumping-clause”,
as in Bookbinder and Higginson [2], whereby it can be advantageous
to over-declare the total weight dispatched, is used more for general
cargo (goods that are not containerized). Instead, the pivot-weight
scheme is suitable for shipments consolidated in ULDs.

An airfreight forwarder's problem is thus a shipment consoli-
dation application where decisions on consolidation and timing
are made: which loads or shipments will be combined for eventual
transport together? and when will that consolidated load be
dispatched? Instead of sending palletized shipments by truck, an
airfreight forwarder sends goods in a ULD on a plane. And rather
than benefiting from a discount for larger loads, the forwarder
will, as noted, pay a penalty when the weight exceeds Uj. The
ACPW problem thus models a practical situation that, other than Li
et al. [10], has previously received limited study. Li et al. [10] give a
detailed description of the problem and propose a large-scale
neighborhood search heuristic to solve it. In this paper, we provide
two formulations. One is very similar to the model of Li et al. [10]
but eliminates a redundant constraint, and the other is based on
column generation. We then propose four solution methodologies
to solve the problem that we test and compare.

2. Literature review

Earlier work on the airfreight consolidation problem assumes
that forwarders reserve cargo space from airlines in terms of
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payload or chargeable weight. This assumption is applicable to
general cargo and non-palletized shipments. However, large air-
freight forwarders usually make their booking in terms of ULDs.

Other than Li et al. [10], the pivot-weight scheme has not been
investigated before. There is, however, some research on the ocean
counterpart that addresses the loading problem based on 20-foot
containers. Pisinger [13] examines an ocean container-loading pro-
blem, where a subset of rectangular boxes have to be loaded into a
rectangular container of fixed dimensions, such that the volume of the
packaged boxes is maximized. Brønmo et al. [3] present a Dantzig–
Wolfe procedure for the ship-scheduling problem with flexible cargo
sizes. Although work concerning ocean cargo may give some insight to
the problem under study, ocean containers have a conventional fixed
capacity limit, instead of a pivot weight.

The ACPW application also differs from the bin-packing and
knapsack problems which have been used as the foundation of
many consolidation-related problem variants. In bin-packing, cost
is associated with the bin-level, but no charge is laid based on the
weight or volume of items as in ACPW. The decision variables for
bin-packing are all binary. Our model, however, also has a
continuous “overage” weight or capacity compared to the
variable-size-and-cost bin-packing problem. In addition, we have
distinct capacities on different bins. The open-end bin-packing
problem [9] allows the capacity of each bin to be exceeded by only
one item; the ACPW does not have such a restriction. Our case also
differs from the conventional knapsack problem: first, we have
multiple knapsacks with diverse capacities; second, we have an
over-pivot rate per unit of cargo that exceeds the pivot weight.

There is some existing research on bin-packing problems which
gives much insight to tackle our application. In particular, the
variable-size bin-packing problem (VSBPP) resembles our work,
but without the continuous variables that represent the over-pivot
weight. However, it should be noted that an important assumption
was made in that literature with respect to the fixed cost per bin:
bins of larger capacity have a proportionally greater fixed cost.
Although this assumption yields an easy approximation, it does
not reflect reality in the transportation industry. In the airfreight
business, the ULD reservation fee is a relatively independent
attribute, one that may or may not be correlated to its capacity.
Therefore we lift this hypothesis of the VSBPP in our ACPW, by
considering a fixed reservation cost independent of ULD capacity.
Crainic et al. [4] recognize the independence of the fixed reserva-
tion cost and the bin capacity, but do not account for the unit cost
cj (i.e. the under-pivot rate) or the over-pivot rate cj

E.
The remainder of this paper is organized as follows: Section 3

presents the mathematical model for ACPW. Sections 4 and 5
introduce a branch-and-price algorithm, as well as a best-fit
decreasing heuristic to the ACPW problem. This is followed by
two extensions of local branching applied to the ACPW problem in
Section 6. The computational performance of the four solution
approaches is compared in Section 7. Section 8 summarizes our
conclusions, and offers suggestions for further research.

3. Problem formulation

In the airfreight consolidation problem with pivot weight, a
freight forwarder is faced with the decision to allocate a total of m
shipments. Each shipment iA I (I is the set of shipments), with
gross weight gi, is to be allocated to a particular ULD jA J (J is the
set of reserved ULDs), subject to a capacity limitation. Suppose
there are n ULDs, each with a fixed reservation cost fj, a pivot
capacity Uj, an extra-pivot capacity Uj

E, an under-pivot rate cj and
an over-pivot rate cj

E. The ULD thus has a total weight capacity of
UjþUE

j . Note that the reservation cost fj is dependent on the time
the ULD is reserved, being low at first when few ULDs are served

and getting higher as the number of ULDs reserved increases. As in
Li et al. [10], we do not model time explicitly in this work and we
assume that it is constant.

We use binary decision variables xij and zj, where xij takes value
1 if shipment i is assigned to ULD j, and 0 otherwise; zj takes value
1 if ULD j is used, and 0 otherwise. Our formulation employs
continuous variables yj

E to denote the additional capacity beyond
the pivot weight for ULD j. The air-cargo consolidation problem
with pivot weight is thus modeled as

½ACPW� : min
X
j

f jzjþ
X
i

X
j

gicjxijþ
X
j

cEj y
E
j ð1Þ

s:t:
X
j

xij ¼ 1 8 iA I ð2Þ

X
i

gixijrUjzjþyEj 8 jA J ð3Þ

yEj rUE
j zj 8 jA J

xijAf0;1g; zjAf0;1g; yEj Z0 8 i; j ð4Þ

The objective (1) minimizes the fixed reservation cost plus the
under-pivot and over-pivot costs. Constraints (2) require that each
shipment be assigned to exactly one ULD. Relations (3) and (4)
model the pivot capacity and over-pivot capacity for each ULD j. Li
et al. [10] showed that this problem is NP-hard, as it can be
reduced to the well-known 3-partition problem.

We note that in the formulation of Li et al. [10], the constraintsP
ixijrNzj 8 j are redundant.

4. Branch-and-price

By relaxing constraint (2), we obtain the following subproblem:

½ACPW � Relax� : min
X
j

f jzjþ
X
i

X
j

gicjxij

þ
X
j

cEj y
E
j þ

X
i

λi 1�
X
j

xij

0
@

1
A ð5Þ

s:t:
X
i

gixijrUjzjþyEj 8 j ð6Þ

yEj rUE
j zj 8 j

xijAf0;1g; zjAf0;1g; yEj Z0 8 i; j ð7Þ

Note that since we relaxed an equality constraint, the multiplier λi
is unrestricted in sign. The preceding subproblem can be decom-
posed to n subproblems as follows:

½SPj� : Wj ¼min f jzjþ
X
i

ðgicj�λiÞxijþcEj y
E
j

s:t:
X
i

gixijrUjzjþyEj ð8Þ

yEj rUE
j zj

xijAf0;1g 8 i; zjAf0;1g; yEj Z0 ð9Þ

[SPj] is a 0/1 knapsack problem with one continuous variable yj
E

and an additional constraint (9), corresponding to each ULD j. The
Lagrangian bound is given by

P
jWjþ

P
iλi. The best Lagrangian

bound is thus maxλ
P

jWjþ
P

iλi, which is equivalent to the
Lagrangian master problem:

½MP� : max
X
i

λiþ
X
j

θj

s:t: θjþ
X
i

λixhijr f jz
h
j þ

X
i

gicjx
h
ijþcEj y

Eh
j 8h; j ð10Þ
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