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a b s t r a c t

In this paper, we present a simulation-based decision support system for solving the multi-echelon
constrained inventory problem. The goal is to determine the optimal setting of stocking levels to
minimize the total inventory investment costs while satisfying the expected response time targets for
each field depot. We derive new decision support algorithms to be applied in different scenarios,
including small-sample and large-sample cases. The first case requires that the set of alternative
solutions is known at the beginning of the experiment, and the number of evaluated solutions may
depend on the simulation budget (i.e., the time available to solve the problem). In the second case, the
alternative solutions are generated sequentially during the searching process, and we may terminate the
algorithmwhen the specified sampling budget is exhausted. Empirical studies are conducted to compare
the performance of the proposed algorithms with other conventional optimization approaches.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The majority of real-life processes are difficult to study via
analytical methods due to their complicated features, and thus there
is a lack of practically tractable solutions. In contrast, a simulation
model can almost always be constructed and implemented to obtain
useful statistical estimators on system performance measures. There-
fore, simulation modeling is used extensively in industry as a
decision-support tool to solve numerous practical problems, includ-
ing estimation of system capacities, obtaining insights about the
interactions among variables, and predicting the impact of alterna-
tive system designs (e.g., [12,13,17]). Equipment-intensive industries
such as airlines, nuclear power plants, and manufacturers of expen-
sive electronic machines often require large quantities of spare parts
to guarantee high system availability, which in turn results in
excessive holding costs. On the other hand, an insufficient stock of
spare parts when demand occurs can also lead to excessive down-
time costs. An implicit assumption in the existing literature is that
inventory holding costs dominate (e.g., [6–8,31]). The focus is often
on the optimization of stocking levels of spare parts rather than the
use of lateral transshipments and emergency supplies. In this paper,
we consider a multi-item, multi-echelon spare parts inventory
system, which consists of a warehouse repair center and awarehouse
inventory center in the higher echelon and multiple field depots
(i.e., inventory stocking centers) in the lower echelon. The specific
service measure that we use in this paper is response time, which is

defined as the time it takes to obtain service parts after the customer
reports a failure. To maintain high-quality service, the analyst prefers
to keep the expected response time for each depot below a given
target level. In the capital goods industry common practice is to
follow a base stock (S�1; S) policy. Further, the average inventory
investment cost is high and dominates the total cost because of the
high-reliability and low-demand nature of spare parts. Therefore, our
goal is to determine base-stock levels for all items at all locations so
that the service-level requirements are met at the minimum inven-
tory investment cost. There are alternative supply chain designs that
have been studied in the literature on this topic. For instance,
remanufacturing can be considered at the local depots [20]. Cattani
et al. [10] studied a dual-role central warehouse structure, which is
common in practice. In this design, the central warehouse not only
replenishes other field depots but also meets demand from custo-
mers in the region near the central warehouse. The other possible
supply chain mechanism is to employ a decentralized control policy
that allows individual divisions or organizational entities to make
their own inventory decisions [9].

Finding the optimal design parameters for a multi-item, multi-
echelon service parts constrained inventory problem is generally
difficult. Most of the existing works employ approximate evalua-
tion methods, such as METRIC (Multi-Echelon Technique for
Recoverable Item Control; see Muckstadt [23]) or negative bino-
mial approximation, in which the distributions of the number of
outstanding orders at lower echelon facilities are approximated
(see [15]). METRIC approximation applies the results derived from
queueing theory (i.e., Palm [24]'s theorem and Little [21]'s law) to
characterize the inventory process at each retailer (i.e., depots in
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our problem setting), in which the assumption of independent
replenishment lead times for retailers is required. However, these
lead times are obviously not independent, since they depend on
the same inventory situation at the warehouse inventory center.
The METRIC approximation is made primarily for analytical con-
venience, and is reasonable only when the correlation between
successive lead times is negligible. If the correlation is high, the
errors in the METRIC approximation may result in an incorrect
stocking level decision in the optimization procedure [15]. Wong
et al. [32] provided numerical results to demonstrate that the
solutions returned by either METRIC or Grave's negative binomial
approximation procedures might be highly suboptimal or even
infeasible. Recently, more research effort has been expended to
develop efficient solution approaches for multi-echelon service
parts systems. For instance, Van Ommeren et al. [30] proposed a
local search heuristic to determine appropriate locations for repair
shops and calculated their capacity in order to insure a minimal
expected cost given by a small probability that a customer has to
wait. Rappold and Van Roo [25] presented an approach to solve
the joint problem of facility location, inventory allocation, and
capacity investment when demand is stochastic. Their approach
extends the results of Graves [15] to incorporate finite repair
capacity and is validated by a simulation study. Lieckens et al. [20]
developed a profit maximizing model to simultaneously decide
the optimal network design and the optimal service delivery
strategy for a multi-echelon service parts network. They formu-
lated a mixed integer non-linear model that integrates queueing
relationships and is solved by a differential evolution search
procedure.

In this paper we develop simulation-based decision support
algorithms to solve the multi-echelon constrained inventory
problem. For simulation-based algorithms, common and critical
questions are related to how much sampling cost should be
allocated or how many candidate solutions should be simulated.
Therefore we propose two algorithms that can be applied to
different scenarios, including small and large-sample cases. The
first algorithm is based on ranking and selection (R&S) procedures,
in which we adopt the assumption of ordinary R&S for which the
set of candidate solutions to be evaluated is fixed and known
before the simulation experiment. In this case, the number of
solutions to be compared or the required sample size is usually
small. The second algorithm is based on a stochastic genetic
algorithm (SGA), which is more appropriate when the candidate
solutions are generated sequentially during the simulation experi-
ment. The GA-type procedure provides a searching mechanism to
explore the entire solution space. In this case we are allowed to
evaluate more candidate solutions, and thus more simulation
replications are required as compared to the first algorithm.
Further, these two simulation algorithms attempt to solve the
inventory problem from different perspectives. Since the first
algorithm focuses on a small set of candidate solutions inside a
large solution space, it is very likely that no feasible solutions can
be found. Therefore we hope to select a compromise solution that
minimizes the amount by which each service level constraint is
violated. On the other hand, the second algorithm searches the
solution space extensively for promising solutions. It allows a
heuristic search procedure (specifically a genetic algorithm),
which is an originally deterministic optimization procedure that
does not rely heavily on problem structure, to function effectively
in a stochastic environment.

Recently, a number of researchers in the field of simulation
have focused on solving expected value constrained stochastic
problems via the technique of sample average approximation. The
expected value function is not analytically tractable but can be
estimated by a sample average approximation of some random
observations. The sample average approximation problem is then

solved by standard deterministic optimization approaches. The
process is repeated several times to obtain a final solution. In each
iteration the sample average is also used to determine the
feasibility of any candidate solution. Therefore it is very likely to
obtain infeasible solutions if the estimator is very noisy and the
sample size is not large enough. For instance, Cezik and L'Ecuyer
[11] formulated a call center staffing problem as an optimization
problem with expected value constraints, and used sample aver-
age approximation together with a cutting plane method to solve
it. Subsequently, Tsai and Zheng [29] used a similar approach to
solve the two-echelon constrained inventory problem, in which
they needed to assume that the expected response time at each
field depot is nonincreasing and jointly convex componentwise
with regard to the stocking level vector. However, experience with
time-based service level constraints demonstrates that this
assumption is in general not true [7], and may lead to infeasible
solutions because of invalid cutting planes. By contrast, the
decision support algorithms proposed in this paper are effective
under very mild conditions, and we compare our algorithms with
the sample-average-approximation method in a numerical study.

The remainder of this paper is organized as follows. In Section 2
we briefly review the literature related to the two major algo-
rithms that constitute our decision support system to solve the
inventory problem. Section 3 presents our modeling framework in
detail, and formulates the inventory problem in the presence of
service level constraints. In Section 3 we also describe the details
of the simulation algorithms to be applied for different scenarios,
including small and large-sample cases. In Section 4 we evaluate
the performance of these algorithms in comparison with other
existing ones on example problems of various configurations. The
paper then ends with some concluding remarks in Section 5.

2. Related work

The following sections introduce the two component algo-
rithms that constitute our decision support system to solve the
inventory problem for different scenarios. In Section 2.1, we
provide a brief review of R&S procedure considering multiple
stochastic constraints, which is extended later to solve the
inventory problem when the set of alternative solutions is known
before the experiment. In Section 2.2, we review the SGA speci-
fically designed for the optimization problem with a single
stochastic objective, which is extended later to handle multiple
stochastic constraints. This extended SGA plays a key role in
decision support when we are allowed to evaluate more candidate
solutions (i.e., given a greater sampling budget).

2.1. Ranking and selection considering stochastic constraints

Ranking and selection (R&S) procedures have proven to be
quite useful for choosing a solution with the best (or near the best)
expected performance among a finite number of simulated alter-
natives (see Kim and Nelson [19] for a survey of R&S). The number
of candidate solutions is often so small that we may need to
simulate all of them to attain a pre-specified confidence level of
correct selection. We are particularly interested in fully sequential
selection procedures, where decision makers obtain a single
observation at a time from each solution still in contention, and
then eliminate solutions from continued sampling when they are
statistically inferior. When we encounter a single stochastic
objective function, the fully sequential selection procedure
(denoted as FSP) presented in Kim and Nelson [18] has been
shown to be more efficient compared to other R&S procedures in
terms of the total number of observations required to reach a
decision. In practice, however, decision makers usually need to
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