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A B S T R A C T

Dimension reduction is a crucial technique in machine learning and data mining, which is widely used in
areas of medicine, bioinformatics and genetics. In this paper, we propose a two-stage local dimension
reduction approach for classification on microarray data. In first stage, a new L1-regularized feature
selection method is defined to remove irrelevant and redundant features and to select the important
features (biomarkers). In the next stage, PLS-based feature extraction is implemented on the selected
features to extract synthesis features that best reflect discriminating characteristics for classification. The
suitability of the proposal is demonstrated in an empirical study done with ten widely used microarray
datasets, and the results show its effectiveness and competitiveness compared with four state-of-the-art
methods. The experimental results on St Jude dataset shows that our method can be effectively applied to
microarray data analysis for subtype prediction and the discovery of gene coexpression.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dimension reduction is a key technique in data mining and
machine learning aimed at using a small number of features or
synthesis features (component variables) to replace the feature
subsets with strong correlations in the original data (Yan et al.,
2006). This technique has been studied in various areas of
applications, including image recognition, text mining and micro-
array data analysis. As high-dimensional microarray data typically
have many more variables than observations and contain
significant noise or outliers, it remains a challenging task for
microarray data analysis. In this paper, we consider dimension
reduction for the purpose of microarray data classification.

According to the relationship between the selected feature subset
andthecategories, dimensionreduction methodscanbe dividedinto
global, local two classes. The global dimension reduction methods
select a few features or synthesis features (component variables) for
all categories, such as PCA (Belhumeur et al.,1997), LDA (Duda et al.,
2001) and LPP (Niyogi, 2004). The challenge of these methods arises
from the fact that there is usually complex category structure in
microarray data. For example, the coexpress genes for one category
may not occur in another category. In local dimension reduction

methods, features or synthesis features are selected for each
category of the original data.

Recently, some local dimension reduction methods have been
suggested (You et al., 2014a, 2014b; Chen and Wang, 2012; Guo and
Guo, 2015). Generally, a two-stage strategy is used in such a
method: examples include TotalPLS (You et al., 2014a, 2014b) and
the centroid-based method (Guo and Guo, 2015). In first stage, a
feature selection method is used to eliminate the irrelevant and
redundant features. Subsequently, the selected features are
transformed into a small number of synthesis features (component
variables) by using feature extraction techniques (e.g., PLS (Barker
and Rayens, 2003)) in the next stage. The first stage is especially
crucial due to the noise or outliers contained in microarray data.

Many traditional feature selection methods lack an effective
mechanism to deal with noise and outliers, such as Trace Ratio (Nie
et al., 2008), F-test (Le Cao et al., 2009) and Similarity Preserving
Feature Selection (SPFS) (Zhao et al., 2013). To handle this problem,
some methods (e.g., PLSRFE (You et al., 2014a, 2014b) and MSVM-
RFE (Zhou and Tuck, 2007)) use the Recursive Feature Elimination
(RFE) strategy (Guyon et al., 2002), which heuristically removes the
features with small feature weights in each iteration. However,
there is no guarantee that a useful feature has to have a weight
larger than other features and some useful features may be
eliminated during the process of RFE (Sun et al., 2010).

L1 regularization, which adds a L1 regularized penalty to the
objective function, is usually deemed as an effective way to deal
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with noise and outliers (Li et al., 2015). Popular L1-regularized
methods include L1-SVM (Zhu et al., 2004) and L1 logistic
regression (Ng, 2004). However, it is difficult to solve the L1-
regularized objective function efficiently due to the non-differen-
tiability of L1 regularization (Liu et al., 2013). Recently, several L1-
regularized LDA methods (e.g., Li et al., 2015; Wang et al., 2014)
have been developed in classification problems for high-dimen-
sional data and they can solve the L1-regularized problem
efficiently by using some iterative techniques. One main drawback
of these methods is that they can only obtain local optimum
instead of global optimum. Some L1-regularized logistic regression
methods (e.g., Shi et al., 2010; Yuan et al., 2012; Tan et al., 2013) are
able to obtain the optimal solution under some strict conditions.
Nevertheless, it is still challenging for them to identify the most
discriminative subset from millions of features (Tan et al., 2013).
LLFS (Sun et al., 2010), which combines L1-regularized logistic
regression with the large margin framework, shows interesting
performance on high-dimensional data. However, LLFS has high
computational cost when applied to multiclass problems. It is
necessary to consider the balance between the computational cost
and classification accuracy for microarray data classification.

In this paper, we propose an efficient L1-regularized feature
selection method that combines LDA with L1-regularized logistic
regression for local dimension reduction on microarray data. The
objective function is solved by using Fletcher–Reeves conjugate
gradient descent. And the theoretical analyses suggest that the
global optimal solution can be obtained with a non-zero initial
point. As PLS (Partial Least Squares) has been extensively used in
high-dimensional microarray data analysis, such as SVA-PLS
(Chakraborty and Datta, 2012) and PCA-PLS (Li et al., 2015), we
also use it in the second stage of our method. However, most
dimension reduction methods only focus on improving the
recognition accuracy for microarray datasets. We try to predict
the subtype of selected genes (features) by using PLS-based
method and the experimental results on St Jude dataset verify the
rationality of our method to some extent. Moreover, the
performance of our dimension reduction method is evaluated
on ten publicly available microarray datasets, and the results show
its effectiveness. Compared with our previous work (Guo and Guo,
2015), the method presented in this paper is much motivated,
analyzed and experimentally evaluated. In particular, we proved
that the L1-regularized feature selection method can obtain an
optimal solution with a non-zero initial point in this paper.

The rest of the paper is organized as follows: Section 2 gives
detailed description of the proposed local dimension reduction
method. Experimental evaluation is presented and discussed in
Section 3. Subtype prediction on St Jude dataset is provided in
Section 4. In Section 5, our conclusions and the future work are
presented.

2. The proposed local dimension reduction method

The proposed local dimension reduction method contains two
stages. First, a L1-regularized feature selection method (see
Section 2.1) is used for feature elimination. After that, PLS-based
feature extraction (see Section 2.2) is implemented on the
selected features, which projects the features into low-dimen-
sional space.

2.1. The feature selection method

This section presents a feature selection method using L1-
regularized logistic regression. The method uses the class
separability as a criterion for feature selection and it can obtain
the optimal solution efficiently with a non-zero initial point.

2.1.1. Class separability measure
Class separability means large between-class distance but small

within-class distance. Let S ¼ x1; x2; � � � ; xn½ �T 2 Rn�d denote a
training data set, where xi is the i-th sample of the data containing

d features, Y ¼ y1; y2; � � � ; yn½ �T 2 Rn�1 is the corresponding class

labels, and d � n. Let x jð Þ
i denotes the i-th sample in class j, W ¼

w1; w2; � � � ; wd½ � 2 R1�d be a weight vector, the between-class
distance and the within-class distance are defined as:

Sb ¼ dw uj; uk
� � ð1Þ

and

Sw ¼
Xg
j¼1

Xnj

i¼1

dw x jð Þ
i ; uj

� �
; ð2Þ

where g is the number of classes, nj is the number of samples in

class j, uj is the centroid of the class j, i.e., uj ¼ 1
nj

Xnj

i¼1

x jð Þ
i and dw ;ð Þ

is a distance function about W. Varieties of distances dw ;ð Þ
have been proposed in some references (Sun et al., 2010; Liu et al.,
2013). For the purpose of this paper, dw ;ð Þ is defined as the
following:

dw x; yð Þ ¼ x � ywk k; ð3Þ

with ZWk k ¼
X
i

wi

ffiffiffiffiffiffi
zi2

p
.

2.1.2. Objective function
Here, we first consider binary problems, while in Section 3.1.4

the method is extended to multiclass settings. In the same spirit as
LDA (Fisher, 1936), which maximizes the between-class distance
while minimizing the within-class distance, our objective function
is given by:

min
w

J Wð Þ ¼ Sw � rSb; ð4Þ

where r is the balance coefficient to make the second term of the
function can get the same range of the first term. So, r can be set to
equal to n (n is the number of all samples).

The objective function (4) can be simplified as:

min
w

J Wð Þ ¼ �
Xn
i¼1

WZT
i ; ð5Þ

where Zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx jð Þ

i1 � uj1Þ2
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu11 � u21Þ2

q
; . . . ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx jð Þ

i1 � ujdÞ2
q

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1d � u2dð Þ2

q
Þ, with x jð Þ

ik ; uik the k-th element of x jð Þ
i and ui,

respectively.
Motivated by LLFS, we introduce L1 regularized logistic

regression to formulate the new objective function as:

min
w

K Wð Þ ¼
Xn
i¼1

log 1 þ exp �WZT
i

� �� �
þ l Wk k1; ð6Þ

where l is the regularization parameter that controls the
sparseness of the solution.

Let us consider the following optimization problem:

min
w

K Wð Þ ¼
Xn
i¼1

log 1 þ exp �WZTi
� �� �

þ l Wk k1
s:t:W � 0:

8><
>: ð7Þ

The introduction of the constraint W � 0 enables us to obtain
the optimal solution, where it has been previously used in many
methods (e.g., (Sun et al., 2010; Cai et al., 2010)).
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