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A B S T R A C T

Analysis of an extended price series from 1973 to 2016 for New Zealand A grade export logs confirms that the
price series is not I(0) stationary. The rejection of the unit root test suggests that it is also not I(1). It is estimated
that log prices are fractionally integrated with A grade prices being I(0.78) and the natural logarithm of A grade
prices being I(0.83). The implication is that log prices should be modelled using fraction Brownian motion (FBM)
rather than geometric Brownian motion (GBM) or as a stationary autoregressive process.

The difference in the NPV calculated using FBM compared to the NPV of classic Faustmann or GBM depends
on the fractional difference, log price and volatility. Analysis of the extended A grade price series indicates an H
value of about 0.3. At this level the differences at stand age 0, from both Faustmann and GBM, are modest in
terms of NPV. However the differences are marked in terms of reserve log price strategy, probability of harvest
and rotation age. Differences in NPV between FBM and Faustmann increase and become material as volatility
increases.

1. Introduction

Forest valuation in New Zealand and many other countries is based
on the Faustmann approach (e.g. NZIF, 1999). However, there is in-
creasing interest in recognising the option value inherent in the flex-
ibility that the forest owner has over the timing of harvest. Practitioners
have been following research activity in this field and are seeking
practical applications.

Research on the use of real option approaches for forest valuation
can be differentiated between studies with stationary prices (e.g.,
Norstrom, 1975; Lohmander, 1988; Brazee and Mendelsohn, 1988;
Haight and Holmes, 1991) and those with non-stationary prices (e.g.,
Clarke and Reed, 1989; Morck et al., 1989; Thomson, 1992; Reed,
1993). In the studies with stationary prices, the expected value of a
stand has been found to be higher when stochastic variation in price is
exploited, compared to the Faustmann value. However, in studies using
non-stationary prices, “there are no gains except when there are fixed
costs (e.g., management costs, alternative land uses)”; i.e., the Faust-
mann value is sufficient (Plantinga, 1998).

Plantinga (1998) also found that “as in previous studies with sta-
tionary prices, expected timber values are higher with a reservation
price policy compared to the Faustmann model with expected prices.
However, the expected values with non-stationary prices are identical

to the Faustmann values”. Insley (2002) also showed the importance of
the underlying stochastic price process in applying a real options ap-
proach to forest valuation. She found that “option value and optimal
cutting time are significantly different under the mean reversion as-
sumption compared to geometric Brownian motion”.

Manley and Niquidet (2010) compared the real option value of a
typical New Zealand plantation with the Faustmann value under dif-
ferent log price models. As with the earlier studies, real option value
depended heavily on the log price model assumed. Under the assump-
tion that log prices follow a non-stationary random walk with geometric
Brownian motion (GBM), real option value was similar to Faustmann
values estimated with constant log prices, except when log prices were
very low and close to the harvesting cost. However, when log prices
follow a mean–reverting random draw or AR(1) process, option value
exceeds Faustmann value at all log prices.

Niquidet and Manley (2007) analysed historical log prices in New
Zealand and found that virtually all log prices followed a non-stationary
process. The analysis indicated that log prices were likely non-sta-
tionary random walks (or at least contained a random walk compo-
nent). A subsequent analysis (reported in Manley, 2013) with an up-
dated time series confirmed this finding. However, a key limitation of
this work is the length of the time series (from Q3 1994 to Q1 2011),
which limits the size and power of the tests and perhaps more
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importantly the ability to pick up longer term cycles. Although the
analysis of Niquidet and Manley (2007) indicated a non-stationary price
process for virtually all log grades and regions, tests on a longer time
series of A grade export logs for 1973–2001 were inconclusive.

Niquidet and Sun (2012), in reviewing forest product prices, con-
sidered 32 publications of which 22 analysed log price or stumpage
series. They found conflicting evidence about the price process fol-
lowed. They noted that research in forest economics had focused on
“the two extremes: (1) a nonstationary unit root process which is in-
tegrated of order one I(1), and (2) a stationary process integrated of
order zero I(0)”. Their subsequent analysis of North American lumber
and pulp prices led them to reject both stationary and non-stationary
null hypotheses. They concluded that lumber and pulp prices are
fractionally integrated (i.e. they are I(d) with 0 < d < 1) and display
long memory. Estimates of the fractional difference parameter (d)
ranged between 0.68 and 0.81 for lumber prices and was 0.64 for pulp.
Kristoufek and Vosvrda (2014) analysed daily prices between 2000 and
2013 of front futures for 25 commodities. Their implied estimate of d
for lumber was 0.86. For other commodities the range was between
0.73 (oats) and 1.2 (copper).

Niquidet and Sun (2012) noted that “in the range
−0.5 < d < 0.5 time series are stationary and invertible, whereas
nonstationary series are those with d ≥ 0.5. The data-generating pro-
cess is mean-reverting if 0 ≤ d ≤ 1, although for d ≥ 0.5 the term
mean-reversion may be misleading as it only applies to the property of
shocks eventually dissipating but the expected mean of the series is
undefined as the variance of the series is not finite”.

1.1. Fractional Brownian motion

Fractional integration is the discrete time counterpart of fractional
Brownian motion (FBM). The above suggests that FBM rather than GBM
may be more appropriate for modelling log prices over time.

FBM was introduced by Mandelbrot and van Ness (1968) as a
generalisation of Brownian motion in which, unlike Brownian motion
or GBM, increments may not be independent. It has subsequently been
used in a wide range of applications. For example, Baillie (1996) dis-
cussed applications of fractional integration in geophysical sciences,
macroeconomics, asset pricing models, stock returns, exchange rates
and interest rates. Other FBM examples are given by Elliott and Chan
(2004) on options and Rostek and Schobel (2013) on financial model-
ling.

The focus of this paper is to extend the previous work of Manley and
Niquidet (2010) to include fractional Brownian motion. Initially we
analyse New Zealand log prices including the extended A grade log
price series. Having determined that fractional integration or long
memory is indicated we then compare real option value under FBM
with Faustmann value.

2. Approach

2.1. Log price analysis

Log prices analysed are:

• Ministry for Primary Industries (MPI) quarterly log prices from Q3
19941 to Q3 2016 for each of 9 log grades.

• Weighted average log price (using relative volumes at age 30 for a
specified stand as weights).

• A grade price series from Q1 1973 to Q3 2016. This series is a
composite series. Data was available for Q1 1973 to Q1 2001 from
the now defunct company Fletcher Challenge Forests. We have ex-
tended this with MPI data through to Q3 2016. Before doing so we

confirmed that there was close alignment of data from the two series
over the common period of Q1 1992 to Q2 2001.

Nominal prices are converted to real using CPI. Tests are applied to
both untransformed prices and also the natural logarithm of prices. The
former are used to allow comparison with previous studies, while the
latter are used in the price model adopted.

Tests used are:

• DF-GLS test (Elliott et al., 1996) with null hypothesis of I(1); i.e.,
that there is a unit root and the series is non-stationary. The lag was
selected by the modified Akaike information criterion (MAIC) (Ng
and Perron, 2001).

• KPSS test (Kwiatkowski et al., 1992) with null hypothesis of I(0);
i.e., that the series is stationary.

• GPH estimate (Geweke and Porter-Hudak, 1983) of fractional dif-
ferencing parameter (d) for any series that has both hypotheses re-
jected.

• KPSS test on the demeaned fractionally differenced series (Shimotsu,
2006) to confirm whether it is stationary. If a series is I(d) then its
dth difference follows a I(0) process.

2.2. Price models

Manley and Niquidet (2010) and Manley (2013) used a log price
model of a non-stationary random walk with GBM. The discrete-time
version of this is that the price at time t (Pt) has a lognormal distribution
(i.e., Pt is lognormal with ln(Pt) normally distributed). The model im-
plies that:

∑= + − ++ln P ln P μT σ T 2 εt T t
2

i (1)

where

Pt and Pt + T are prices at time t and T years later
μ is expected annual change in log price (expressed as a proportion)
σ is the standard deviation, i.e., the volatility (expressed on an an-
nual basis)
ε is a random normal variable with mean 0 and variance = σ2

In contrast, for FBM the log price model is:

∑= + − ++ln P ln P μT σ T 2 Wt T t
2 2H

i
H (2)

where

Wi
H is fractional Gaussian noise (FGN) with mean 0, variance = σ2

and Hurst coefficient H. The autocorrelations are given by ρ(T) = ½
[(T + 1)2H − 2T2H + (T− 1)2H]. The summation extends from
i = 1 to T.

The Hurst coefficient (H) is related to the fractional difference or
memory parameter (d) by the expression H = d+ ½. Table 1 gives the
autocorrelations for different values of T with H varying between 0 and
0.5. In the case where H = 0.5, the autocorrelations (for T > 0) all
become 0 and Model (2) is equivalent to Model (1); i.e., GBM is a
special case of FBM with H = 0.5.

As a basis for comparison, we also developed a stationary AR(1)
model:

= + ++ θ θ σ εln P (1– ) ln P ln P – 2t 1 t
2 (3)

with θ = 0.742.
Examples are provided in Fig. 1 for FBM with H = 0.001, H = 0.3

and H = 0.49 as well as the AR model. Ten different price paths over
50 years, from an initial price of $100/m3, are shown for each price
model. They illustrate that as H decreases, prices become more per-
sistent. There is much less of a range when H= 0.001 compared to1 Export A and export K price series start in Q1 1992.
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